Risque sismique

Risque sismique
Diplôme d'ingénieur de l'École et observatoire des sciences de la Terre (EOST)Parcours Diplôme d'ingénieur de l'EOST

Description

Ce module vise à présenter aux élèves ingénieurs les concepts et les méthodes nécessaires à l'évaluation des risques liés aux séismes. Il comporte l'intervention de plusieurs intervenants extérieurs.
La connaissance des risques liés aux séismes et leur évaluation reposent avant tout sur une bonne compréhension d'une cascade de phénomènes physiques: au niveau de la source du séisme, de la propagation des ondes sismiques, du comportement local du sol à proximité des structures et de la réponse mécanique des structures elles mêmes.
Les phénomènes physiques en jeu et la caractérisation du mouvement du sol pendant un tremblement de terre sont présentés: accumulation des contraintes tectoniques dans une région, rupture de la zone de nucléation du séisme, propagation de cette rupture sur la faille, génération des ondes sismiques, propagation de ces ondes dans la croûte terrestre, atténuation et diffraction des différents champs d'ondes, amplification du mouvement sismique par la géologie de sub-surface (bassins sédimentaires, vallées alluviales) et par la topographie.
Le comportement du sol à proximité des structures joue un rôle fondamental dans cette cascade de phénomènes. L'étude de celui-ci fait intervenir des concepts spécifiques tels la réponse non linéaire des sols, leur comportement en charge dynamique et la liquéfaction.
Enfin, la réponse de la structure elle-même (bâtiments, ponts etc.) est abordée. Le passage du mouvement du sol au mouvement de la structure fait intervenir des notions de dynamique des sols et des structures. Ce cours aborde la théorie de la dynamique des structures appliquée au séisme ainsi que la représentation de l'aléa pour la sismologie de l'ingénieur (paramètre du mouvement du sol, spectre de réponse etc.), avec en perspective les pratiques réglementaires. L'auscultation et l'analyse dynamique d'une structure sont abordées par des exemples expérimentaux (analyse modale) et numériques ainsi que la problématique liée au bâti existant dans les études de risque sismique (vulnérabilité des constructions et méthodes empiriques).



This module aims to introduce engineering students to the concepts and methods necessary for earthquake risk assessment. It includes the intervention of several external speakers.
The knowledge of risks related to earthquakes and their evaluation rely above all on a good understanding of a cascade of physical phenomena: at the level of the source of the earthquake, of the propagation of seismic waves, of the local behavior of the ground in the vicinity of the structures and of the mechanical response of the structures themselves.
The physical phenomena involved and the characterization of the ground motion during an earthquake are presented: accumulation of tectonic stresses in a region, rupture of the earthquake nucleation zone, propagation of this rupture on the fault, generation of seismic waves, propagation of these waves in the earth's crust, attenuation and diffraction of the different wave fields, amplification of the seismic motion by the subsurface geology (sedimentary basins, alluvial valleys) and by the topography.
The behavior of the ground near the structures plays a fundamental role in this cascade of phenomena. The study of the latter involves specific concepts such as the non-linear response of soils, their behavior under dynamic loading and liquefaction.
Finally, the response of the structure itself (buildings, bridges, etc.) is addressed. The transition from ground motion to structural motion involves concepts of soil and structural dynamics. This course covers the theory of structural dynamics applied to earthquakes as well as the representation of the hazard for engineering seismology (parameter of ground motion, response spectrum etc.), with a view to regulatory practices. The auscultation and the dynamic analysis of a structure are approached by experimental (modal analysis) and numerical examples as well as the problematic related to the existing building in the studies of seismic risk (vulnerability of constructions and empirical methods).
 


School regulations

The curriculum includes three years of study: admissions, the organisation of studies, assessments, placements and vivas, graduation and international exchanges are all explained in the current school rules (pdf).

First and second year courses

First and second year courses

  • General modules: mechanics, geology, mathematics, IT, digital analysis, signal processing, inverse methods.
  • Geophysical methods: physics of the Earth, seismology, seismic modelling and imaging, geodesy, gravimetry, potential methods, geomagnetism, electromagnetism, rock physics and fracture, hydrology.
  • Practical work: geophysical measurements in the field (photo) and in the laboratory, geology field placements in the Alps.
  • Languages and economic and social sciences: English, modern language 2, economics, industrial property, management, sustainable development, ethics, quality, company health and safety
  • IT and research projects, shared with the first year of the master’s degree
  • Summer placements at a laboratory or company, with numerous opportunities abroad (international placement contact: Mike Heap)

Third year course

Students have a choice of 3 specialisations in the third year:

  • Geophysics applied to the exploration and production of raw materials: seismic and hydrodynamic characterisation of reservoirs, seismic processing and interpretation, potential methods.
  • Geophysics applied to geotechnics: geotechnics and the resistance of materials applied in civil engineering, geomechanics, hydrogeophysics, electromagnetic methods, earthquake.
  • Hydrogeology, hydrogeochemistry, hydrogeophysics (HydroG3).

Additional teaching:

  • Languages and economic and social sciences: English, energy economy, company strategy and structure.
  • Geophysics field camp in Alsace (photo).  Here are images of a normal fault in the Rhine Graben taken by students.
  • 6-month industry placement culminating in the writing of a dissertation and a viva before a jury in order to obtain the engineering degree. The placements are carried out all over the world.