Modélisation sismique

Modélisation sismique
Diplôme d'ingénieur de l'École et observatoire des sciences de la Terre (EOST)Parcours Diplôme d'ingénieur de l'EOST

Description

- Vibroseis: Le signal 'sweep', la fonction de l'autocorrelation et le Fourier spectre du sweep.

- Les ondes émis par une source ponctuelle: Les transformations de Fourier et de Hankel.

- L'attènuation des ondes sismiques.

- La modélisation des ondes dans les milieux stratifiés: La matrice globale, l'algorithme avec les matrices de la réflexion et la transmission.
Etude de cas: Expérience sismique 3D au site du forage profond KTB.

- La propagation dans les milieux anisotropes: Les équations de Christoffel, les vitesses de phase et de groupe,
les milieux isotrope transverse, la théorie des perturbations, la propagation dans un milieu avec un systéme de fractures parallèles.
Etude de cas: L'anisotropie de l'argilite, le stockage des déchets nucéaires.

- La modélisation du champ d'onde dans les milieux hétérogènes. La théorie des rayons pour les milieux isotropes et anisotropes. Les équations différentielles cinématiques et dynamiques.

- La propagation des ondes dans un milieu fracturé.
Etude de cas: La diagraphie (full waveform logging) dans les forages du bassin versant du Strengbach.

- Propagation des ondes dans les milieux poreux.
Etude de cas: La sismique des ondes P et S proche surface et les acquifères.

- La ligne de commande d'un système d'exploitation Linux.

- Les scripts Bash, Seismic Unix

- La language de programmation Fortran, Make


- Vibroseis: The sweep signal, its autocorrelation function and Fourier spectrum.

- The wave field radiated by a directed force source: Fourier transform and Hankel transform.

- Attenuation of seismic waves.

- Modeling of the wave field for a stack of homogeneous layers: The reflectivity method, the global matrix scheme and the reflection and transmission matrix algorithm.
Case study: 3D reflection seismic survey of the Earth's crust at the Deep Drilling Site KTB.

- Wave propagation in anisotropic media: Christoffel's equations, phase and group velocity, transversely isotropic media, perturbation theory, propagation through a system of parallel cracks.
Case study: The anisotropy of claystone, the storage of nuclear waste.

- Modeling of the wave field in inhomogeneous media: The ray method for isotropic and anisotropic media. The kinematic and dynamic ray tracing ordinary differential equations.

- Wave propagation in a medium with randomly oriented fractures: The differential effective medium.
Case study: Full waveform logging in the Strengbach water catchment.

- Wave propagation in porous media.
Case study: Near surface P and S wave seismics and acquifers.

- The command line interface of Linux operating systems, Bash shell scripts, Seismic Unix

- The Fortran programming language, Make

A la fin de ce cours, vous serez capable de :

- appliquer et programmer la thèorie pour modéliser la propagation des ondes

- présenter et critiquer des articles scientifiques, comprendre le processus du 'peer review'

- utiliser le système d'exploitation Linux/Unix en ligne de commande

- apply and program the theory to model wave propagation

- present and criticise scientific articles, understand the peer review process

- use the Linux/Unix operating system with the command line interface

 

Compétences visées

Introduire les méthodes pour modéliser la propagation des ondes élastiques dans les milieux complexes.

Introduce the theory to model the propagation of elastic waves in complex media.

 


School regulations

The curriculum includes three years of study: admissions, the organisation of studies, assessments, placements and vivas, graduation and international exchanges are all explained in the current school rules (pdf).

First and second year courses

First and second year courses

  • General modules: mechanics, geology, mathematics, IT, digital analysis, signal processing, inverse methods.
  • Geophysical methods: physics of the Earth, seismology, seismic modelling and imaging, geodesy, gravimetry, potential methods, geomagnetism, electromagnetism, rock physics and fracture, hydrology.
  • Practical work: geophysical measurements in the field (photo) and in the laboratory, geology field placements in the Alps.
  • Languages and economic and social sciences: English, modern language 2, economics, industrial property, management, sustainable development, ethics, quality, company health and safety
  • IT and research projects, shared with the first year of the master’s degree
  • Summer placements at a laboratory or company, with numerous opportunities abroad (international placement contact: Mike Heap)

Third year course

Students have a choice of 3 specialisations in the third year:

  • Geophysics applied to the exploration and production of raw materials: seismic and hydrodynamic characterisation of reservoirs, seismic processing and interpretation, potential methods.
  • Geophysics applied to geotechnics: geotechnics and the resistance of materials applied in civil engineering, geomechanics, hydrogeophysics, electromagnetic methods, earthquake.
  • Hydrogeology, hydrogeochemistry, hydrogeophysics (HydroG3).

Additional teaching:

  • Languages and economic and social sciences: English, energy economy, company strategy and structure.
  • Geophysics field camp in Alsace (photo).  Here are images of a normal fault in the Rhine Graben taken by students.
  • 6-month industry placement culminating in the writing of a dissertation and a viva before a jury in order to obtain the engineering degree. The placements are carried out all over the world.