Géomécanique

Géomécanique
Diplôme d'ingénieur de l'École et observatoire des sciences de la Terre (EOST)Parcours Diplôme d'ingénieur de l'EOST

Description

Revue du champ de contrainte tectonique dans différents contextes
Influence de la pression de pore sur le champ de contraintes
Mesures de contraintes in situ à différentes échelles et leurs interprétations.
Concentration des contraintes autour des forages
Mécanismes de la fracturation hydraulique et rupture en paroi de forage
Problèmes de subsidence des réservoirs et chemins de contraintes
Sismicité induite

Review of the tectonic stress field in different contexts
Influence of pore pressure on the stress field
In situ stress measurements at different scales and their interpretations.
Stress concentration around boreholes
Hydraulic fracturing mechanisms and borehole wall spalling
Reservoir subsidence problems and stress paths
Induced seismicity



A la fin de ce cours, vous serez capable de :

Analyser la connectivité hydraulique d’un réservoir en fonction de mesures de pression de pore. Déterminer si une fracture est conductrice d’un point de vue hydraulique ou imperméable. Déterminer les mécanismes à l’origine de la surpression dans les réservoirs et calculer cette surpression à partir de mesures géophysiques. Estimer l’état de contrainte dans un réservoir à partir de mesures en forage. Calculer si un puits sera stable et proposer des stratégies pour permettre de le stabiliser. Estimer si la déplétion dans un réservoir peut conduire à l’apparition de glissements et prédire la subsidence attendue à partir des données de production et des caractéristiques du réservoir. Calculer le risque de sismicité induite dans un réservoir lié à des opération anthropiques.

Analyze the hydraulic connectivity of a reservoir based on pore pressure measurements. Determine whether a fracture is hydraulically conductive or impermeable. Determine the mechanisms that cause overpressure in reservoirs and calculate this overpressure from geophysical measurements. Estimate the state of stress in a reservoir from borehole measurements. Calculate if a well will be stable and propose strategies to stabilize it. Estimate whether depletion in a reservoir can lead to the occurrence of subsidence and predict the expected subsidence from production data and reservoir characteristics. Calculate the risk of induced seismicity in a reservoir related to anthropogenic operations.

 

Compétences visées

Ce cours aborde les thèmes liés au comportement mécanique des massifs et réservoirs fracturés. Il est basé sur une approche pluridisciplinaire des processus rencontrés et fait appel à différents concepts dans les domaines de la mécanique des roches, de la géologie structurale et de la sismologie.

This course covers themes related to the mechanical behavior of fractured massifs and reservoirs. It is based on a multidisciplinary approach to the processes encountered and calls on various concepts in the fields of rock mechanics, structural geology and seismology.
 


School regulations

The curriculum includes three years of study: admissions, the organisation of studies, assessments, placements and vivas, graduation and international exchanges are all explained in the current school rules (pdf).

First and second year courses

First and second year courses

  • General modules: mechanics, geology, mathematics, IT, digital analysis, signal processing, inverse methods.
  • Geophysical methods: physics of the Earth, seismology, seismic modelling and imaging, geodesy, gravimetry, potential methods, geomagnetism, electromagnetism, rock physics and fracture, hydrology.
  • Practical work: geophysical measurements in the field (photo) and in the laboratory, geology field placements in the Alps.
  • Languages and economic and social sciences: English, modern language 2, economics, industrial property, management, sustainable development, ethics, quality, company health and safety
  • IT and research projects, shared with the first year of the master’s degree
  • Summer placements at a laboratory or company, with numerous opportunities abroad (international placement contact: Mike Heap)

Third year course

Students have a choice of 3 specialisations in the third year:

  • Geophysics applied to the exploration and production of raw materials: seismic and hydrodynamic characterisation of reservoirs, seismic processing and interpretation, potential methods.
  • Geophysics applied to geotechnics: geotechnics and the resistance of materials applied in civil engineering, geomechanics, hydrogeophysics, electromagnetic methods, earthquake.
  • Hydrogeology, hydrogeochemistry, hydrogeophysics (HydroG3).

Additional teaching:

  • Languages and economic and social sciences: English, energy economy, company strategy and structure.
  • Geophysics field camp in Alsace (photo).  Here are images of a normal fault in the Rhine Graben taken by students.
  • 6-month industry placement culminating in the writing of a dissertation and a viva before a jury in order to obtain the engineering degree. The placements are carried out all over the world.