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• very low ranging noise levels achievable in outer space 

• challenge: laser interferometry in Earth orbit 

• different environmental conditions, different target quantity: the Earth 

gravitational field! 

Laser interferometric ranging 

GRACE microwave ranging 

GRACE FO laser 

 interferometer 

accelerometer 

LISA ranging 
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First laser interferometer between Earth orbiters 

• experimental demonstrator on GRACE reflight 

• design completed (NASA-JPL / AEI Hannover, group of 

Karsten Danzmann, Gerhard Heinzel) 

• construction started 

• test case for exploring and understanding optical 

gravimetry in Earth orbit 

GRACE Follow-On mission 2017-2022 
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GRACE-FO Laser Ranging Interferometer (LRI) 
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Centre of mass research topics:  

• initial signal acquisition,  

• differential waveform sensing,  

• beam steering for better pointing control 

• pointing jitter, optical pathlength 

• combining µwave with LRI 

• sensor fusion, data analysis 

“racetrack” interferometer configuration 

for 80 nm/sqrt(Hz) noise level ranging 

for better gravity resolution 



Beyond GRACE-FO 
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Centre of mass 

• future missions will use laser interferometry 

• dramatic improvement by multiple satellite pairs 

• long lead time of space missions 

 

science challenges: 

• optical testmass readout 

• interferometer configuration 

• phase meters 

• pointing jitter 

• straylight 

• system modeling 

• environmental and platform effects 

• … 



 

Enhanced resolution in gravity modeling 
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GRACE monthly 
Temporal 

variations 

200 km 

Static gravity field 

GOCE 

spherical harmonic degree 

Laser interferometry 

scenario: Panet et al 2013 400 km 1000 km 

Pairwise laser interferometry scenario, 

monthly 

• laser interferometry between satellites is capable to 

recover temporal gravity and mass variations with 

significantly higher spatial resolution 

• allows quantifying highly relevant geophysical processes 
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Optical gradiometry 

Image credit: ESA 

GOCE accelerometer performance using data from: 

Stummer, Claudia S.:  PhD Thesis, DGK, Reihe C, Heft 695 

Torsion pendulum measurement data: courtesy of W.J. Weber, Trento 
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LISA Pathfinder 

g1 

g2 

Multiple testmasses for optical  gradiometry 

GOCE 



Torsion balance as test environment 
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• test sensitivity to 

spurious forces 

• test mass readout 

• multi-testmass / 

multi-channel 

interferometry (> 

20 degrees of 

freedom) 



  

Atomic interferometry 
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• QUANTUS experiments for quantum gases in microgravity 

• DLR project in Bremen drop tower 

• group of Ernst M. Rasel, Wolfgang Ertmer 



  

Atomic interferometry 
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Bose Einstein Condensate 

Müntinga et al., Phys. Rev. Lett. 110 093602 

(2013) 



Transportable quantum gravimeter 

Source for Bose 

Einstein Condensates 

Free-fall tube 

absorption 

detection 

mirror 
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Hannover approach:  

• chip atom source 

• ultra-cold atoms in transportable setup, Bragg interferometry 

• sub-µGal perspective for compact field devices 



 

Compact sensors: long term perspective 

  

13 

• atomic gravity sensors “for the 

road” 

• with few nm/s2 accuracy 



  

Very long baseline atom interferometry (VLBAI) 
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• Stanford, MIGA 

• sensitivity ~T2 

• 1 sec ~10-13 m/s2 

• challenges: VLBAI 

gravimetry, gradiometry 

and fundamental physics  

Stanford 

10 m atom 

fountain 
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State of the art optical clocks 

  

Sr lattice clock: stable Al+ clock: reproducible 

Hybrid Clock: 

stable & reproducible 
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Chronometric leveling 

  

ocean 

surface 

geoid (W0) 

surface 

• frequency transfer through optical fiber 

• frequency difference between remote 

clocks 

• provides directly potential differences 

and height differences over very large 

distances 

16 



Steps towards chronometric leveling 
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existing and prospective fiber links 



• Acoustic and thermal perturbations affect length of fiber 

• frequency of transmitted light is Doppler-shifted 

 active length stabilization of fiber required 

 

 

 

 

 

 proof of principle experiments PTB–LUH/MPQ 

1840 km loop link with 𝛿𝑓/𝑓∼4×10−19 @ 100 s 

Clock comparison: phase-stabilized fibers 

long fiber 

freq. correction 
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group of Harald Schnatz 



Steps towards chronometric leveling 

19 

• transportable clocks for side-by-side calibration 

• to eliminate residual systematic errors 

• connection F – D at University of Strasbourg 

Computing Centre 



Relativistic geoid 

  

W0, f(W0) 

H 

Δf 

Δf 

Δf 

• relativistic geoid definition: surface where 

clocks run with the same speed 

• clock network: geoid accessible within 

continents 

• well defined height reference 

• very different from conventional height 

determination 

• challenge: develop the foundations for 

chronometric leveling and relativistic geoid 
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ESA 



towards clock based gravity reference… 
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• geopotential models 

• satellite orbits 

• geocenter coordinates 
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Height inconsistencies 

 

Sideris et al 2013 (GOCEplus study) 

• decimeter inconsistencies 

• hamper combination of 

tide gauges 

• efforts for height system 

modernization 

• clocks could provide in-

situ cm accuracy referred 

to well-defined W0 
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Classical leveling 

 

ocean 

surface 

geoid 

ellipsoid 

surface 

• spirit leveling 

• large effort 

• accumulation of errors over 

large distances 

• tide gauges as rather arbitrary 

reference 
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geo-Q 2026 

• Global change monitoring based on quantum 

measurement science 

• Multi-testmass interferometry in space as standard 

technique for sensing global mass variations  

• Quantum gravimeters rapidly and reliably monitoring 

sub-surface mass changes   

• Relativistic geodesy with clock networks establishing 

and distributing vertical reference  

• New class of gravity models integrating quantum 

sensor data with spatio-temporal zoom-in  

• For everyday geo-applications & fundamental physics 

breakthroughs 
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J. Fraunhofer 



 

Towards new geophysics 

satellite gravimetry with 

higher spatial resolution 

and accuracy needed 
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Towards new geophysics 
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satellite gravimetry with 

higher spatial resolution 

and accuracy needed 



 

Towards new geophysics 

terrestrial gravimetry with 

dense coverage needed 
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Relativistic geodesy with clocks 

  

ocean 

surface 

geoid (W0) 

surface 

• fundamental relation time / frequency – gravitation / height 

 

 

• optical atomic clocks now approaching 10-18   
   0.1 m2/s2      1 cm 

• the most accurate physical measurement! 

• towards cm precision height determination with frequency measurements 

• curvature of space-time now relevant at the cm level on Earth surface! 

DW =
Df

f
c2
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Optical gradiometry 

• challenge: exploring the metrology of optical multi-

testmass systems 

• pm/√Hz ranging 

• multichannel optics, phasemeters, testmass control, … 
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First laser interferometer between Earth orbiters 

GRACE Follow-On mission 2017-2022 
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• “racetrack” interferometer configuration 

• beam steering for better pointing control 

• nm ranging for better gravity resolution 

Sheard et al 2012 



• laser interferometric length measurements 

• gravity gradiometry with atomic interferometry (ESA, NASA, …) 

• gravitational redshift, clock network in space (STE-QUEST) 

Future satellite gravimetry 
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Enhanced resolution in gravity modeling 

  

GRACE monthly 
Temporal 

variations 

Static gravity field 

GOCE 

spherical harmonic degree 
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Optical gradiometry 

• future gradiometry in combination with ranging is 

very promising for satellite gravimetry 
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Gravity sensing with atom interferometry 

• matter waves of a free-falling atom cloud are coherently 

split, redirected and recombined with a pulsed light grating 

• position information imprinted onto matter wave phase in each 

atom-light interaction 

• measured through matter wave interferometer phase readout 
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Gravity signals: Glacial Isostatic Adjustment 

  

Müller et al 2010 

• uplift (up to 1 cm/y), 

• viscous mass redistribution in 

mantle 

V. Klemann 
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Glacial Isostatic Adjustement (GIA) is 

• revealing mass flux in Earth mantle and mantle properties 

• affecting whole Earth (mm/y-level), sea level change estimates  

• affecting geodetic networks 

• measurement challenge, faster absolute gravimeters needed to 

understand regional patterns 


