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In May–June 2018, global earthquake monitoring agencies 
detected a series of large earthquakes in an otherwise relatively 
quiet area ~35 km east of the island of Mayotte. A peak MW 5.91 

earthquake occurred on 15 May 2018, the largest ever recorded in 
the region. In November 2018, long-duration (~20 min) very-long-
period seismic signals (VLPs) with periods of ~16 s were discov-
ered in global seismic recordings1, triggering the curiosity of the 
scientific community. The origin of the VLPs was traced back in the 
vicinity of the swarm activity close to Mayotte. Most often, VLP sig-
nals2 are recorded in volcanic areas3 suggesting a magmatic origin 
for the sequence.

Mayotte is one of the four principal volcanic islands in the 
Comoros archipelago and home to a population of ~256,000 (2017). 
The island belongs to a 250 km long NW–SE chain of basaltic volca-
noes located between Africa and Madagascar (Fig. 1). The region has 
been affected by multiple tectonic processes4,5 including an episode 
of NE–SW trend rifting during the Permo–Triassic, associated with 
the fragmentation of Gondwana6,7 and the formation of the Somali 
and Mozambique oceanic basins, during which Madagascar drifted 
southwards8–12. Proposed sources of volcanism include hotspot13, 
passive magma ascent through lithospheric discontinuities14 or rift-
ing coeval to rifting in Southern East Africa15. Volcanism at Mayotte 
started at about 10–20 Ma (ref. 15,16) and subsequently migrated to 
produce the other islands. Mayotte last erupted 4,000 ± 500 years 
ago15. The nature of the crust and its thickness beneath the Comoro 
Islands is debated14,15. Only a few M > 4 earthquakes have been 
recorded in this area, including the 1993 Mb 5.2 event, which caused 
~1.7 M Euros of damage in Mayotte, and the 2011 Mb 4.9 (ref. 16). 
Focal mechanisms and GNSS data support NE–SW transtension17,18.

By modelling seismological data at regional and teleseis-
mic distances and ground displacement recordings at Mayotte 
(Supplementary Fig. 1) collected between May 2018 and April 2019, 

we provide evidence of the drainage of 1.7 ± 0.4 km3 of magma 
from a ~30 km deep sub-Moho magma reservoir by a dyke that 
propagated to the seafloor. The dyke propagation caused a swarm of 
almost 7,000 volcano-tectonic earthquakes (VTs) and the downsag 
of the host rock overlying the reservoir, which in turn triggered its 
resonance, emitting 407 long-duration VLPs, and helped sustain a 
high outflow rate throughout. We argue that reservoir roof failures 
at calderas, which are well-studied, can be used as a downscaled 
analogue to evaluate future scenarios.

Data analysis and modelling
We use seismic data at regional and teleseismic distances (ABKAR 
seismic array, Kazakhstan) and test different velocity models 
(Supplementary Fig. 2, Supplementary Tables 1–4) to perform 
full waveform moment tensor (MT) inversions and depth phase 
analysis, thereby retrieving focal mechanisms, centroid locations 
(Supplementary Figs. 3–5) and depths (Supplementary Figs. 6–8) for 
the most energetic VTs19. Additionally, we take advantage of seismic 
station YTMZ—deployed over the full study period on Mayotte—to 
produce an enhanced catalogue19 of relative locations of weaker VTs 
(Supplementary Fig. 9). We detected 6,990 VTs and located 1,904 
of them (Fig. 1) by retrieving their origin direction and distance 
(Supplementary Figs. 10 and 11; see Supplementary Information). 
The VTs are classified into families of events (colour-coded in  
Figs. 1 and 2a–c) with similar waveforms and distance to station 
YTMZ (Supplementary Fig. 12). We design a detection tool to scan 
the broadband data at four regional seismic stations for monochro-
matic, low-frequency signals, thereby detecting 407 long-duration 
VLPs19 (Supplementary Fig. 13). We also develop an algorithm to 
invert for the centroid MT of the VLPs and resolve the damping 
constant and dominant frequency of a damped linear oscillator 
as the source time function, obtaining high-quality solutions for  
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22 VLPs19 (Fig. 3). Due to the uncertainties on Moho depth and 
crustal structure, all our results are tested against different velocity 
models with varying Moho depth (see Supplementary Information).

Chronology of the crisis
We have identified four phases of the volcano-seismic crisis. During 
Phase I (10 May to 7 June 2018) the most energetic VT burst of 
the sequence (11 MW > 5 events between 15 and 20 May) occurred 
~35 km East of Mayotte (Fig. 2a). We find a depth of 22 km for the 
largest MW 5.9 earthquake. Between 31 May and 7 June 2018, the 
seismicity migrated upward, as confirmed by the centroid depth 
estimations and array beam analysis (Fig. 2c, Supplementary Figs. 7 
and 8). During Phase II (7 June to 18 June 2018) epicentres migrated 
southwards approaching the recently discovered seamount20 (Fig. 1, 
Supplementary Fig. 5). Left-lateral strike-slip faulting dominates in 
Phases I–II (Fig. 1). A consistent expansion-related isotropic com-
ponent, increasing gradually up to 20% of the total moment, is found 
during the upward migration and in Phase II (Supplementary Figs. 
5 and 6). By mid June, a new type of activity emerged in the form of 

long-duration VLPs. However, early VLPs had already occurred on 
30 January and 2 June.

Few Mw > 4.5 VTs (Fig. 2a) occurred in Phase III (28 June to 
17 September 2018), while VLPs became dominant. Phase IV (17 
September 2018 to March 2019) started with an increasing VLP 
rate, this time accompanied by a new type of VTs (Fig. 2c,d). The 
dominant period of VLPs increased smoothly from ~15.2 s (June 
2018) to a maximum of ~15.6 s (October 2018), before decreasing 
again to ~15.3 s (February 2019; Fig. 2e, Supplementary Fig. 13).

The VLP MTs are similar (Fig. 1), with a predominance of alter-
nating positive and negative vertical Compensated Linear Vector 
Dipole (CLVD) (Fig. 3). The vertically axisymmetric MTs suggest a 
subhorizontal crack, dipping slightly to the west. Centroid locations 
are the same within errors and depths are at 37 ± 11 km. The largest 
VLP occurred on 11 November 2018, with an estimated surface wave 
magnitude of MS 5.1. The damping of the VLP source (quality fac-
tor, Q) is in the range 72 ± 6, which is higher than in other cases21,22 
but not unique23. VLPs onsets are often quasi-simultaneous to one 
or multiple weak VTs, as observed previously23. Due to the emergent 
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Fig. 1 | Map view and cross sections of seismic and deformation sources. a, Weak VT locations (points) and strong VT MTs (focal sphere, lower emisphere 
projections of the double-couple components in map view and backprojection of full MTs from East or South in the cross sections, respectively) plotted and 
colour-coded according to similarity of waveform and distance to station yTMZ (yellow triangle), overlay of 22 VLPs MTs (black focal spheres, negative CLVD 
convention used), best-fit point deformation sources (black symbols, see Supplementary Information), vertical displacements (black lines) and time evolution 
of horizontal displacements at four GNSS stations (black scatter points, 1 July 2018 to 1 April 2019); uncertainties are within 2σ of vertical displacements 
(green boxes, horizontal uncertainties are negligible with respect to vertical ones), best fitting modelled displacements (red lines and arrows) and the inferred 
VLP source location (dashed red ellipses). The southeast and upward migration paths of seismicity and magma in Phases I–II (dashed black arrows in the 
cross-sections) reach the location of the discovered seamount20 (orange circle and bars, assuming a 5 km diameter20). b, Map of the Comoro Islands, major 
regional tectonic structures and basin configuration5, showing fracture zone (thin lines) and earthquake locations, and MTs before the sequence (circle and 
focal spheres, source GlobalCMT, GEOFON and USGS catalogues); shaded-relief topography and bathymetry are from the ETOPO1 Global Relief Model from 
NOAA’s National Centers for Environmental Information. The location of the study region is highlighted by a red star on the Earth globe.
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nature of VLP signals, it is difficult to judge whether VTs precede 
or follow VLPs, but some VLPs respond to VTs with abrupt signal 
amplitude changes, depending on whether the successive VTs are in 
or out of phase with the resonating VLP source (Fig. 4a). This obser-
vation suggests that VTs act as repeated forcing, contributing to the 
exceptionally long duration of some VLPs. The VLP spectra (Fig. 4b) 
reveal higher modes including non-integer ratios between them.

All VTs accompanying VLPs and most VTs in Phases III–IV (red 
and green dots, Figs. 1 and 2a,c) are located closer to Mayotte and 
have steep NE–SW striking thrust mechanisms (Fig. 1), inconsistent  
with local transtension. An isolated burst of VTs at the end of 

August 2018 included earthquake repeaters and anti-repeaters, 
with highly correlated and anti-correlated waveforms, respectively  
(Fig. 4c). VTs and VLPs have persisted throughout Phase IV until 
the time of writing. The cumulative moment of VTs in Phases III–IV 
is M0 = 5.42·1016 Nm, corresponding to Mw = 5.1, far less than for the 
dyke-related seismicity in Phases I–II (M0 = 2.03·1018 Nm, Mw = 6.2).

Geodetic data from Mayotte Island reveal a steady, long-lasting 
subsidence and eastward displacement at four GNSS stations. The 
length of the displacement vector from July 2018 through April 
2019 is 18 cm. Early ground deformation is weak, and grows clearly 
from July onward. We constrain the location, depth, aspect ratio and  
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volume change by inverting these GNSS data for the time interval 1 
July 2018 to 31 March 2019. An isotropic source of pressure is unable 
to simultaneously fit the ratio of horizontal to vertical displace-
ment and the vectors’ orientation1. We use generalized point-source 
deformation models24,25, first assuming a vertical ellipsoidal source26 
and investigating the effect of layering on the inferred source shape 
(Supplementary Figs. 14 and 15). The best fit is given by a large nega-
tive isotropic plus a small positive vertical CLVD source 12 ± 4 km 
East of Petit Terre at a depth of 32 ± 3 km, volume change is here 
–1.7 ± 0.4 km3. We also test non-axisymmetric generalized point 
sources in a homogenous medium24, obtaining a laterally contract-
ing vertical dislocation as the best-fit deformation mechanism at a 

depth of 23 km and expelled magma volume (potency) of −1.3 km3 
with 99% confidence bounds of (20, 27) km and (−2.8, −1.2) km3, 
respectively. This is a lower bound of the source potency since all 
GNSS stations are grouped on one side of the source, so that the net-
work has no sensitivity to NS source contraction. Both analyses indi-
cate that vertical shrinking of the source is negligible, suggesting that 
the shrinking source does not coincide with the source of the VLPs.

Interpretation of chain of events
In summary, we have identified two main stages of the unrest  
(Fig. 5). The first stage (Phases I–II), with the migration of an 
energetic seismic swarm from deep to shallow depth, is consistent 
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with the propagation of a magmatic dyke through the whole crust. 
The second stage (Phases III–IV), with simultaneous VLP and VT 
activity and large deflation, suggests the evacuation of a sub-Moho, 
large reservoir and a multifaceted interaction between magma and  
host rock.

The energetic seismic swarms in Phase I marks, to our knowledge, 
the first case of vertical propagation of a dyke traced for >25 km 
from a deep magma reservoir to the surface, although dykes have 
been observed to propagate horizontally for longer distances27,28. 
Dyke-induced swarms of this magnitude are rare and attributed to 
large intruded volumes, which scale with the moment of induced 
events as a power law29. According to this model, the cumulative 
moment of Phases I–II, M0 = 2·1018 Nm, would correspond to a 
dyke volume of 5·10−2 km3. Strike-slip focal mechanisms have been 
observed for other propagating dykes28,30–33. Phase II involves a lat-
eral dyke propagation, with VTs migrating 10–20 km towards South 
and reaching the seamount location20. The relative VT quiescence 

in Phase III is consistent with the establishment of an open path-
way to the surface. High-rate crustal deformation sets on a week 
after the beginning of Phase III, consistent with the time needed for 
magma to widen its pathway by conduit erosion and establish a high 
flow rate34. Taken together, these observations suggest that the end 
of Phase II may mark the onset of the submarine eruption. During 
Phase IV, VTs, VLPs and ground deformation appear interlinked 
mechanically. VTs plausibly trigger VLPs and accompany the slow 
evacuation of the magma reservoir (Fig. 2d,f).

VLPs may have different causes, but ringing events such as 
those observed at Mayotte have previously been explained by the 
resonance caused by slow standing waves trapped at the fluid–
solid interface of a fluid-filled crack or conduit2,35,36. Here, their 
period and duration are especially long, which may be explained 
by the large size of the crack20, the stronger host rock because of 
the depth and basalt as the fluid filling the crack3. We use analyti-
cal formulas37 to constrain crack geometry based on the dominant 
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VLP period, which we assume is the fundamental resonance mode. 
Fundamental periods of 15.2–15.6 s are possible for a wide range 
of lengths and thicknesses (Fig. 6). However, cracks with L < 8 km 
have too little volume to expel more than 1.5 km3 of magma. A 
crack with L > 15 km is unlikely, given the distribution of seismicity  
(Fig. 1). Smooth dominant period changes from 15.2 to 15.6 s and 
back may result first from the crack predominantly thinning and 
next shortening (Fig. 6). For example, path for L = 12 km carries a 
volume loss of 1.6 km3. Thus, the change of dominant period may be 
entirely explained in terms of geometry changes consistent with the 
observed volume loss; variations in other parameters such as melt 
compressional wave velocity are also possible.

VLPs in combination with VTs have often been observed before 
and during caldera collapses18,38–42. For example, VLPs occurred 
before and during the 2000 caldera collapse at Miyakejima, Japan, 
both with oscillating signals39 and 20–50 s single pulse source time 
functions38,40. With a maximum duration of ~60 s they were consid-
erably shorter than those at Mayotte; their modelled source mecha-
nism also had a different geometry38–40. They were interpreted as 
the resonance of an axially symmetric structure in response to a 
shallower trigger39 or as resulting from the intermittent sinking of a 
vertical piston into the magmatic chamber, causing its sudden volu-
metric change38,40. At Piton de la Fournaise, La Reunion island, 0.02–
0.50 Hz VLPs have been attributed to repeated piston-like collapse42. 
The thrust mechanisms of typical VTs in Phase IV, inconsistent 
with the NE–SW transtensional background stress regime, require 
a strong stress perturbation, probably provided by the evacuation 
of the magma reservoir. Steep outward dipping faults are typically 
formed in the early stage of reservoir roof failure upon depletion43,44. 
They occur on newly formed, distributed faults (as suggested by 
their small magnitude and existence of several families), rather than 
on a ring fault, confirming that the faulting is weakening the overly-
ing material rather than representing the slip of a coherent block. 
As they are close above the reservoir, they may exert an efficient 
pressure pulse and trigger waves at the fluid–solid interface travel-
ling towards the opposite edge of the reservoir and back, thereby 
producing a ringing signal3. The observed anti-correlated VT pairs 
(Fig. 4c) may be explained by the reverse motion on a fault, similar  

to observations during collapse events at calderas45. The January 
2018 VLP, observed before the dyke had formed, suggests that the 
oscillator is a portion of the deep reservoir rather than the feeder 
dyke, and that the reservoir then had a similar size and shape.

Our deformation models locate a volume loss of at least 1.3 km3 
at 25–35 km depth below the point where the four GNSS displace-
ment vectors converge, which coincides spatially with the downsag 
seismicity and whose size is consistent with the variations of the VLP 
dominant period. A simple hypothesis is that the easternmost edge 
of the reservoir corresponds with the location of the earliest seismic-
ity burst, later seen to migrate upwards. Thus, two questions remain: 
assuming a 15 km long reservoir, why is volume loss at the western 
edge and not the centre of the crack, and why is the shrinking hori-
zontal rather than vertical? Reconciling the evidence suggest that a 
dipping sill-shaped reservoir loosing buoyant magma would shrink 
at its deeper portion, here to the West, and one-sided drainage cou-
pled mechanically with the reservoir’s failing roof may explain the 
observed horizontal shrinking pattern. Alternatively, a more com-
plex sill shape, with a vertical westernmost portion, could account 
for the crustal deformation pattern. Superposition of outward dip-
ping thrust faulting are equivalent to a vertical positive CLVD46, 
which may explain the model derived from the geodetic data.

In conclusion, our analysis suggests that a subhorizontal magma 
reservoir of up to 15 km in length lies between the newly discov-
ered seamount20 and Mayotte. Its exceptional depth of 30 ± 5 km 
makes it the deepest reservoir whose evacuation has been observed 
in ground displacement data. Preliminary estimates suggest that 
more than 3.4 km3 of magma effused at the seafloor20, making it 
also the largest geophysically monitored submarine eruption to 
date. The mechanical processes activated offshore Mayotte repre-
sent a scaled-up version of a caldera formation process at its nucle-
ating, downsag stage43. Phase IV, currently in progress, involves the 
growth of deep faults at the western edge of the emptying reser-
voir. Observations and modelling of reservoir depletion43 suggest 
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that, should it continue, fault growth will affect a progressively 
wider area and become shallower. A particular hazard is posed by 
a scenario where the outward dipping faults reach the ocean floor 
causing the entire block to collapse abruptly, and new normal faults 
begin to propagate upward, reaching closer to Mayotte. We estimate 
the volume evacuation threshold needed to trigger such a collapse, 
Vmin, based on an equation developed for calderas47:

Vmin ¼
10f ρgh2r2

κ
ð1Þ

where f is rock friction coefficient, ρ is average medium density, 
g is gravitational acceleration, h is reservoir depth, κ is magma 
bulk modulus, r is reservoir radius. Using f = 0.6, ρ = 2700 Kg m−3, 
h = 25 km, r = 7.5 km, κ = 25 GPa we obtain a threshold volume of 
230 km3, which is ~50 times the volume of the seamount on May 
2019. This scenario appears remote at this stage, but critical to 
monitor any migration of seismicity or change of focal mecha-
nisms, as well as better constrain reservoir and faults geometry and 
crustal properties.
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Methods
Details about the methods used in this paper are given in the Supplementary 
information.
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