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SUMMARY 
We propose a scheme to compute interaction effects between two randomly oriented 
cracks under compressive stresses and we discuss the role crack interactions play in 
the crack coalescence process. Stress intensity factors are computed by using an iterative 
technique based on the method of successive approximations. Once crack propagation 
occurs, curved wing cracks grow from the initial crack tips. The stress intensity factors 
at the wing crack tips are calculated as the sum of two terms: a component for a single 
wing crack subjected to both the applied stresses and the interaction effect, and a 
component due to the sliding of the initial crack. We have applied our procedure to 
various crack geometries. Our results show that interaction effects act on the crack 
propagation path. For cracks under tension, our approach correctly predicts the 
curving, hook-shaped paths of interacting cracks that have been observed in various 
materials. For en echelon compressive cracks, interaction effects depend on the geometry 
of stepping. For right-stepping cracks, no mode I crack coalescence occurs. A mixed- 
mode propagation criterion may be introduced to check whether coalescing secondary 
shear fractures initiate. For left-stepping cracks, depending on whether or not there is 
overlapping, crack coalescence is achieved by tension wing cracks at the inner crack 
tips. Without overlapping, the growing wing cracks delimit a region where a tensile 
secondary fracture may develop and lead to coalescence. These results are consistent 
with previous work and show that our procedure may be now extended to a population 
of cracks. 
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1 INTRODUCTION 

Several arguments suggest that interactions between macro- 
cracks (faults) or microcracks play a major role in the 
kinematics of the rupture of geomaterials under a compressive 
state of stress (Brace & Bombolakis 1963; Hoek & Bieniawski 
1965; Bombolakis 1973; Horii & Nemat-Nasser 1985). At the 
field scale, previous studies (see e.g. Segall & Pollard 1980) 
have shown that fault traces consist of numerous discrete 
segments commonly arranged as en echelon arrays. The stress- 
field analysis around en ichelon cracks carried out by Segall 
& Pollard (1980) proved that the interaction term has a great 
influence on the further evolution of structures. Interactions 
can increase or inhibit the further propagation of faults. 

At the laboratory scale, experimental studies (Kranz 1979; 
Horii & Nemat-Nasser 1985) have strongly suggested that 
nucleation, growth and interactions of microcracks are the 

dominant controlling mechanisms of macroscopic failure. 
Under a compressive state of stress, a single crack produces 
two tension wing cracks which grow in a stable manner with 
increasing axial compression, curving towards the direction of 
axial compression. This process has been well reproduced by 
simple analytic simulations (Horii & Nemat-Nasser 1985; 
Ashby & Hallam 1986; Baud, Reuschlt: & Charlez 1996). The 
solutions for more complex crack geometries involving crack 
interactions generally require iterative techniques (Horii & 
Nemat-Nasser 1985; Lockner & Madden 1991; Kachanov 
1992). No approach has yet succeeded in decomposing and 
simulating the mechanisms that lead to crack coalescence and 
to the localization of rupture in loaded samples. 

In this paper, we propose a scheme to compute interaction 
effects between two cracks oriented randomly. Our approach 
is an extension of the iterative procedure used by Segall & 
Pollard (1980). By the use of equivalent cracks, we determine 
the wing crack paths in order to look at evidence of coalescence. 
One of the major issues is to investigate whether it is possible 
to justify the appearance of a shearing band as being a 
consequence of crack interactions and coalescence. This study * Corresponding author. 
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will be carried out with a pair of interacting cracks. The results 
will provide us with several arguments to discuss further 
applications of the model to a population of cracks. 

2 INTERACTION BETWEEN A PAIR OF 
STRAIGHT CRACKS 

Fig. 1 illustrates the geometry of the problem. We consider a 
homogeneous, isotropic material subjected to uniform normal 
stresses o, and o2 at infinity. Let ci be the angle between a, 
and the horizontal direction, a2 being perpendicular to ol. We 
introduce two cracks of half-lengths a ,  and a, and orientations 
/Il and p2 with respect to the coordinate system (I, J) .  Because 
interactions create non-uniform stress distributions on the 
cracks, we divide each crack into n segments. Each segment is 
subjected to uniform normal and shear stresses and its length 
depends on the stress gradients, that is the segment is short 
where the resolved stress gradients are large and long where 
the stresses are nearly uniform. Adding the stresses for each 
segment together, we may approximate any arbitrary stress 
distribution on the crack. 

We first quantify the interaction effect for the pre-existing 
straight cracks. To solve this problem, we use an iterative 
technique based on the method of successive approximations 
(Muskhelishvili 1977). Because stresses everywhere in the 
material are uniquely defined by the boundary conditions, we 
just have to guarantee that these conditions are fulfilled on 
each crack during the iterative process. At each step of the 
process, we determine the stresses (normal and shear) on both 
cracks by using complex functions. We then correct the stress 
field to fulfil the boundary conditions (the detailed procedure 
is given in Appendix A). The final result are the stress intensity 
factors K ,  and KII at the crack tips of both cracks. 

Segall & Pollard (1980) have used the same kind of com- 
puting scheme. However, in their study they supposed that the 
resulting shear stresses on cracks could not be greater than 
the frictional stresses in a compressive regime. With this 
statement there is no possibility of further propagation of the 
cracks since the driving force of the propagating cracks is the 
difference between shear and frictional stresses. Because we 
want to look at the propagation of the interacting cracks, 
we have to work with the effective shear stress on the crack 

J 

Figure 1. A solid, containing two cracks of half-lengths a, and a2 and 
orientations p1 and /I2, is subjected to stresses (rl and 02. Coordinate 
systems (0, x, y) and (O', v, w) are attached to cracks ( 1 )  and (2 )  
respectively. 

surfaces. At each step, a calculation of the displacements at 
the crack surfaces allows one to determine the crack aperture, 
and to make the necessary distinction between closed and 
open cracks, since the boundary conditions are not the same 
for both cases. In particular, friction has to be considered for 
closed cracks. The final scheme works for all configurations 
and leads to consistent results in the limiting case of pure 
shear when compared with the results of a previous study by 
Isida (1973) who used Laurent series. 

Fig. 2 gives an example of a left-stepping en echelon pair of 
cracks under biaxial compression. The evolution of the mode I1 
stress intensity factor K,, versus the relative horizontal spacing 
d/a shows that interaction plays an important role when the 
crack spacing is less than the crack half-length. As expected, 
K,, at the outer crack tip is little affected by d/a. This clearly 
shows that crack interaction is a short-range process. Before 
crack tip overlapping, Kll is greater than its value KI, for an 
isolated crack, due to an increase of the shear stress followed 
by a decrease of the normal compression. When the crack tips 
overlap, the major effect of interaction is to produce a strong 
increase of the normal compressive stress, which leads to a 
lower effective shear stress and a quick decrease of K,,. For 
right-stepping en echelon cracks, the effect is reversed because 
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Figure 2. (a) A left-stepping en echelon pair of cracks of half-length a 
is subjected to stresses (rl and 5u,. The normal distance between 
cracks is c and the longitudinal distance is d. (b) Normalized mode I1 
stress intensity factor KII/KIIo versus relative longitudinal distance d/a 
for the crack geometry illustrated in (a). K,,, is the mode I1 stress 
intensity factor for an isolated crack under the same loading conditions. 
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of the antisymmetry of the normal stress distribution on 
both cracks. 

3 PROPAGATION PATHS OF 
INTERACTING CRACKS 

Once we have calculated the stress intensity factors K ,  and K,, 
at each tip of both cracks, we have to look at the propagation 
condition for both cracks and their further propagation paths. 
It is well known that when K,, # 0, the relative sliding of the 
faces of the crack does not result in coplanar crack growth, 
but rather produces at the tips of the crack curved tension 
wing cracks which deviate at sharp angles from the sliding 
plane (Brace & Bombolakis 1963; Hoek ,& Bieniawski 1965). 
Thus we have to introduce some modifications in our inter- 
action scheme in order to take into account the possibility of 
wing crack growth at the tip of the initial straight cracks. Due 
to interaction effects, the stress intensity factors are not the 
same at the two tips of an interacting crack (Fig. 3b). It follows 
that the wing cracks initiated at both tips do not show the 
same behaviour, which increases the number of parameters 
because we have to divide the initial crack and both wing 
cracks into independent sets of segments. In addition, we have 
to work with small increments of the applied stress to make 
sure that the associated wing crack growth increment is also 
small, since interaction can significantly modify the wing crack 
path. In order to express complex functions for branched 
cracks, Horii & Nemat-Nasser ( 1985) introduced distributions 
of dislocations to work out curved crack extension. However, 
they only looked at interactions for periodic arrays of cracks. 
In fact, most of the previous studies (see e.g. Kemeny & Cook 
1987) considered periodic arrays of cracks when they dealt 
with interaction effects on crack propagation. We introduce 
here an approximate method to determine the propagation 
paths of two interacting wing cracks. 

The starting point of our procedure is the two straight 
cracks of Fig. 1 in a medium subjected to a horizontal normal 
stress q, and a vertical normal stress crv (a = 90’). When both 
stresses are compressive, the cracks are closed and friction has 
to be introduced. The horizontal stress is held constant and 
uv is increased. We use the previous interaction scheme for 
straight cracks to determine the stress field on each crack and 
compute the stress intensity factors at all crack tips. We then 
use Griffith’s criterion (Lawn 1993) for the onset of propagation 
by introducing the crack extension force G. It is written as 
G 2 Gc,  where G ,  is the critical crack extension force. G is 
computed from the stress intensity factors K ,  and KII, and is 
written as G = ( K : +  K i ) / E ,  where E is Young’s modulus 
(Lawn 1993). 

At a critical stress level, a wing crack will initiate and grow 
at one or several tips of the initial straight cracks, depending 
on where the G value fulfils Griffith’s criterion. The direction 
of propagation is given by the orientation for which G is at a 
maximum. Because cracks are no longer straight, we have to 
introduce new expressions for the stress intensity factors. Let 
us consider the first sliding crack of half-length a being 
extended by a wing crack at both tips. We replace the curved 
wing cracks by straight ones (Fig. 3) and let 1, be the length 
of the right wing crack, and I ,  the length of the left one. The 
orientation relative to the sliding crack is Qr for the right wing 
crack and 0, for the left one (Fig. 4). We now introduce an 
equivalent straight crack which replaces both sliding and wing 

Figure 3. The real wing crack is replaced by a straight one for which 
the orientation 6 depends on its length 1. 

real branched 

equivalent crack :\ 

crack 

Figure 4. The real crack (sliding crack + wing cracks) is replaced by 
an equivalent straight crack for which the half-length a, and the 
orientation Be depend on the geometry of the real crack. and 6, 
( l ,  and 6,) are the length and the relative orientation of the left (right) 
wing crack. 

cracks by joining the tips of the real branched crack (Fig. 4). 
Its half-length a, and its orientation Be depend on the length 
and orientation of both sliding and wing cracks. By introducing 
an equivalent crack for the second branched crack too, we are 
now able to apply the interaction procedure described in 
Appendix A. As before, we divide each equivalent crack into 
n segments ( n  = 60) and calculate the normal and tangential 
stresses applied on each segment of both equivalent cracks. 

We then go back to the real branched cracks. We define a 
new segmentation of these cracks by projecting the segments 
of the equivalent cracks on the corresponding real cracks 
(Fig. 5). We assume that the stress components applied on 
each segment of the real cracks are the same as for the 
corresponding segment of the equivalent cracks, except that 
we take into account the orientation difference between both 
cracks, that is we apply three rotations (one for the sliding 
crack and two for the wing cracks) to the stress components. 
As a result we obtain the normal and tangential stresses oN 
and oT applied on each segment of the real branched cracks. 

We now use a superposition technique to calculate K ,  and 
K,, at the tip of a wing crack. We assume that K ,  and K,I are 
the sum of two terms: a component K;(K:) for a single 
straight wing crack subjected to both the external stress field 
and the interaction effect; and a component Ki(Ki l )  due to the 
sliding of the initial crack under external and interaction stress 
fields. This assumption is quite similar to that of Horii & 
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equivalent straight crack 

real branched crack 

Figure 5. The equivalent crack is divided into segments, which are 
projected on the real crack to compute the stress components. 

Nemat-Nasser ( 1986), and has been previously developed for 
a single isolated branched crack (Baud et ul. 1996). 

Let us consider a sliding crack of half-length a and its two 
associated wing cracks of length 1 and orientation 0 relative to 
the sliding crack. For determining K;  and KE we complete 
each wing crack with a virtual one of the same length, subjected 
to symmetrical stresses, that is the normal and tangential 
stresses oN and oT acting on the virtual wing crack at a distance 
x to the sliding crack tip are the same as those acting on the 
real wing crack at the same distance x to the sliding crack tip 
(Fig. 6). Thus we obtain a crack of length 21 whose stress 
intensity factors K ;  and KZ can be written as (Sih & Liebowitz 
1968) 

In our case, the integral has to be replaced by a summation 
over all segments of the wing crack. When the two wing cracks 

real wing crack 

1 

+/P$ sliding crack 

virtual wing crack 

Figure 6.  The wing crack is completed with a virtual one of the same 
length I and subjected to symmetrical stresses, that is the normal and 
tangential stresses uN and uT acting on the virtual wing crack at  a 
distance x to the sliding crack tip are the same as those acting on the 
real wing crack at the same distance x to the sliding crack tip. 

do not have the same length, we have to compute K;  and 
K$ separately for the left and right wing cracks by simply 
replacing 1 by the corresponding value in eq. ( I ) :  I ,  for the left 
wing crack, I ,  for the right one. 

The second component K;(Kh)  is calculated by using a 
procedure very similar to Steif's ( 1984) approximate solution 
for a non-infinitesimal branching crack. Steif ( 1984) proposed 
replacing the sliding crack and its two wing cracks by a single 
straight crack of the same orientation as the initial sliding 
crack and of length 2(a + I ) .  This crack is subjected along its 
entire length to the same normal and tangential stresses N and 
T as the initial sliding crack. This leads to stress intensity 
factors K I  and KII of the form N Jm and T Jm, 
respectively. These factors implicitly include the contributions 
of the wings subjected to the same stresses N and T, which 
are respectively of the form iV@ and T f i .  These contri- 
butions must obviously be subtracted from the previous factors 
so that the result represents the only influence of the sliding 
crack. We propose to modify this approximation slightly by 
considering that in place of loading the whole length of the 
straight crack and then subtracting the contributions of the 
wings, the influence of the sliding crack may be modelled by 
loading only a central part of length 2a of the straight crack 
of length 2(a + I ) .  This approximation has already been used 
in the case of an isolated sliding crack (Baud et al. 1996). The 
normal and tangential stresses applied to the straight crack 
are those calculated by the interaction procedure described 
above. The factors K," and K,"[ are then given by (Sih & 
Liebowitz 1968) 

for closed cracks, and 

for open cracks. In the case of closed cracks, the coefficient of 
friction p has been introduced to define the effective tangential 
stress oTeff(x) as IoTeff(x)( = IoT(x)l- p(oN(x)(, where oT(x) and 
oN(x) are, respectively, the tangential and normal stresses 
applied on the crack. The weighting functions fLs(6),  fiO(0), 
&(0) and f $ ( 0 )  have been introduced to take into account 
the effect of the orientation of the wing crack on the stress 
intensity factors. They are determined by considering the 
infinitesimal wing crack limit and by identifying our solution 
with the transformed stress intensity factors defined by Lawn 
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(4) 

When the two wing cracks do not have the same orientation 
and length, we have to compute Kf and Ki, separately for the 
left and right wing cracks by simply replacing I and 8 by the 
corresponding values in eqs (2) or (3): lI and Q1 for the left 
wing crack, 1, and 8, for the right one. 

We are then able to calculate the crack extension force G 
for all crack tips. We add a length increment to the growing 
wing cracks until the corresponding G value is lower than the 
critical crack extension force G,. Once all crack tips are stable, 
we increase the applied vertical stress ov and again follow the 
previous procedure to compute the new crack lengths. 

4 RESULTS A N D  DISCUSSION 

The accuracy of the method has been tested in the case of a 
single crack. Results obtained for the stress intensity factor are 
very close to accurate analytic solutions (Baud et al. 1996). 
The difference is always less than 5 per cent in the range of 
parameters we used. This means that the introduction of the 
equivalent crack does not disturb the expected behaviour of a 
single crack. Because the analysis in no way depends on the 
value of a, we have set the length of both initial cracks to 
unity for all simulations. The incremental wing crack growth 
length has been set to a x 5 x whilst the incremental 
vertical stress increase has been set to 0.01. These values ensure 
a rather continuous propagation process. 

The first example of a propagation path is given in Fig. 7. 
We show the case of two parallel cracks under uniaxial tension. 
Without any interaction these cracks would propagate in their 
own planes. Due to interaction effects, the cracks deviate from 
the horizontal direction and propagate towards each other 
after a few increments in the opposite direction. However, this 
interaction effect is only important if the crack tips are very 
close, that is the distance between the crack tips should not 
be greater than the half-length of the cracks. The problem of 
two cracks under tension has been studied by quite a few 
authors, e.g. Macdonald, Sempere & Fox (1984); Pollard & 
Aydin (1984). These authors have used this crack geometry to 
infer some consequences regarding the structure and evolution 
of oceanic ridge segments. In fact, Pollard & Aydin (1984) 
based their discussion on the static stress field around crack 
tips and made some inferences on the propagation paths of 
interacting cracks without performing any calculations. 
However, their conclusions are in qualitative agreement with 
the analysis developed by Macdonald et al. (1984) and based 
on the boundary-element method introduced by Mills (198 1). 
This method uses arrays of dislocations that simulate a crack 
tip and allows curved crack propagation. Pollard & Aydin's 
(1984) main result, when applied to oceanic ridge segments, is 
that two propagating cracks will tend to develop an overlap- 
ping spreading-centre geometry unless they are perfectly 
aligned. This is due to the fact that the predicted crack paths 
initially curve away from each other. This result is also 
obtained from our approach, and Fig. 7 clearly shows the 
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Figure7. Propagation paths for two parallel cracks of initial half- 
length a = 1 under uniaxial tension. (a) c = 0.5a and d = a; (b) c = O.la 
and d = OSa, where separation d and spacing c are defined in Fig. 2(a). 

initial weak divergence of crack paths followed by a strong 
convergence leading to intersection. 

Next we look at en echelon cracks by distinguishing left- 
and right-stepping cracks. This geometry has already been 
used by several authors to study the brittle fracture process 
under uniaxial compression. In particular, Bombolakis ( 1964, 
1968 ) performed compression experiments on photoelastic 
materials and pointed out that certain en echelon arrays of 
cracks, especially left-stepping arrays, are more favourable for 
coalescence than others. More recently Spicak & Lokajicek 
(1986), using perspex plates, and Lin & Logan (1991), using 
Berea sandstone samples, came to the same conclusion, that 
left-stepping en echelon cracks promote crack coalescence 
whereas right-stepping cracks hinder this coalescence. 

Fig. 8 shows three examples of pairs of left-stepping 
en echelon cracks under uniaxial compression, the parameter 
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Figure 8. Propagation paths for two left-stepping en echelon sliding 
cracks under uniaxial compression. The initial half-length is a = 1 
and the orientation is 45" to the horizontal direction. (a) c= 0.5a and 
d = a; (b)  c = 0% and d = 0.5a; (c) c = 0 . 5 ~  and d = -0 .5~ .  

varied being the longitudinal separation between the inner 
crack tips. We see that the wing crack propagation is disturbed 
at the inner crack tips, where interaction effects are the strongest. 
In Fig. 8(a), where the separation is half the length of the 
cracks, there seems to be no coalescence by the propagation 
of the inner wing cracks. This result is consistent with a 
previous calculation by Wei & De Bremaecker ( 1995b), who 
used the boundary-element implementation of the repulsion 
scheme and the maximum strain-energy release-rate criterion 
(Wei & De Bremaecker 1995a) to compute the growth path of 
two right-stepping horizontal cracks under right-lateral shear- 
ing. Their geometry is comparable with ours since the vertical 
compression applied on inclined cracks resolves into left-lateral 
shearing on the crack planes, which makes our geometry of 
left-stepping cracks under left-lateral shearing the symmetrical 
geometry of Wei & De Bremaecker's (1995b) one. As they 
concluded, this geometry may have a geological application 
since a pull-apart basin may develop in the region confined 
by the trajectory of the extensions (An & Sammis 1996). At 
the laboratory scale, Shen et al. (1995) observed similar results 
on a gypsum mixture under uniaxial compression: in a first 
stage, wing cracks initiate and propagate from the inner crack 
tips; in a second stage, a secondary fracture originates inside 
the bridge confined by the wing cracks, propagates towards 
the pre-existing fracture tips and leads finally to coalescence. 
This result shows that our model is able to reproduce the first 
stage of this process, but the second stage cannot be modelled 
so simply. 

In the other two examples, where the longitudinal separation 
is smaller or negative with overlapping, coalescence occurs 
directly through the propagation of the wing cracks (Figs 8b 
and c). When there is no overlapping (Fig. 8b) the wing crack 
propagation becomes unstable before coalescence takes place, 
explaining the absence of external wing cracks. This instability 
is consistent with the experimental results of Horii & Nemat- 
Nasser (1985) for a suitably oriented row of interacting cracks 
in Columbia resin. When there is some overlapping (Fig. 8c), 
an important rotation of the wing cracks takes place and the 
branching angle becomes greater than 70.5", the wing crack 
initiation angle for an isolated sliding crack (Ashby & Hallam 
1986). This again is consistent with the experimental results of 
Spicak & Lokajicek (1986) on perspex plates, especially their 
group 3 of configuration sets. 

Fig. 9 shows two examples of right-stepping en echelon 
cracks with and without overlapping under uniaxial com- 
pression. The wing crack path is the same as for an isolated 
crack, that is interaction does not promote coalescence. This 
is quite consistent with the results of Spicak & Lokajicek 
(1986). Indeed, our result agrees well with the morphology of 
their group 7 of configuration sets. Wei & De Bremaecker 
( 1995b) have applied the boundary-element method to the 
case of two inclined right-stepping cracks under left-lateral 
shearing and calculated the initiation angle of the internal 
wing cracks. Their results are consistent with ours, considering 
the differences in geometry and stress orientations. 

In all cited studies, the crack propagation criterion is based 
on the maximum strain energy release rate. Another criterion 
was proposed by Du & Aydin (1993), who decomposed the 
strain energy into two components: a dilatational strain energy 
and a distortional strain energy associated respectively with 
mode I and mode 11. They then applied the maximum dis- 
tortional strain energy criterion for shear fracture propagation 
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Figure 9. Propagation paths for two right-stepping en Pchelon sliding 
cracks under uniaxial compression. The initial half-length is a = 1 
and the orientation is 45" to the horizontal direction. (a) c = O.5a and 
d = 0 . 5 ~ ;  (b )  c = 0 . 5 ~  and d = - 0 . 5 ~ .  

to the case of left- and right-stepping cracks under biaxial 
compression. Their conclusion was that two en Pchelon cracks 
always propagate towards each other, regardless of the sense 
of shear or crack step direction. 

Shen & Stephansson (1993, 1994) proposed another rupture 
criterion to simulate the mixed-mode fracture propagation. 
They decomposed the strain energy release rate at a crack tip 
into the same components as Du & Aydin (1993) but they 
added a distinction between mode I and mode I1 fracture 
toughness for energy (GI, and GIIc). This distinction allowed 
Shen & Stephansson (1993, 1994) to compute the F-value, 
which is simply the sum of the normalized values of both 
strain energy components. For a given material, however, the 
mode I1 fracture toughness is much higher than the mode I 
toughness. For example, in rocks GIIc is found at the laboratory 
scale to be at least two orders of magnitude higher than GI, 
(Li 1987). This gap explains the observations by Shen et al. 

( 1995) of coalescence between en echelon cracks by secondary 
shear cracks in addition to the usual mode I wing cracks. In 
fact, there are two stages in the evolution of the system: in the 
first stage wing cracks initiate when the dilatational strain 
energy component GI reaches the GI, value for a critical stress 
level; in the second, secondary cracks initiate when the dis- 
tortional strain energy component GI, reaches the Gllc value 
for a higher critical stress level. The occurrence of secondary 
shear cracks thus depends on the relative magnitudes of GI, 
and G,,,. 

5 CONCLUSIONS 

Our results show that crack interactions play an important 
role in the crack coalescence process. Nevertheless, interactions 
only occur over short distances, which means that they need 
high crack densities in order to become a controlling factor in 
the fracture process (Horii & Nemat-Nasser 1985). Our results 
also show that some geometrical requirements have to be 
fulfilled for the coalescence process to take place. Figs 8 and 9 
illustrate the difference between left- and right-stepping 
en Pchelon cracks. Our result that coalescence is enhanced 
in the left-stepping geometry is consistent with previous 
experimental results (Spicak & Lokajicek 1986; Lin & Logan 
1991 ). However, when investigating real rocks, there are some 
differences between our results and previous experimental 
observations. In particular, Lin & Logan (1991) used Berea 
sandstone samples to study the morphology of the interaction 
zone between two left-stepping en Pchelon cracks. Their 
experiments revealed the formation of several new sets of 
fractures within the extensional interaction zone. This com- 
plexity cannot be modelled by our approach, nor can it be 
investigated by photoelastic studies (Bombolakis 1964, 1968), 
since granular rocks show heterogeneities at the grain scale 
and inelastic behaviour that cannot be taken into account by 
these techniques (Bombolakis 1973; Kranz 1979). 

Despite these limitations, the theoretical approach we have 
presented provides a useful tool to simulate the propagation 
paths of interacting cracks. Although we used an iterative 
procedure, there is no need for a very powerful computer, and 
this point makes this approach attractive. The use of equivalent 
cracks is quite satisfactory since our results are consistent with 
previous experimental results obtained on homogeneous and 
elastic materials. 

One challenge of our approach was to look at the possibility 
of the appearance of a shearing macrofracture as a consequence 
of crack interactions and coalescence. Although this study has 
been carried out with only a pair of interacting cracks, our 
results show that under some specific geometries cracks may 
indeed coalesce and form a longer crack, which in turn may 
interact with another favourably oriented crack. This is a 
possible scenario for granular rocks where favourably oriented 
flawed grain boundaries, or pre-existing well-oriented cleavage 
cracks are always present. Such a process has been described 
in detail by Bombolakis (1973) for a pegmatite where fracturing 
began by the propagation of pre-existing en tchelon cleavage 
cracks, and continued by slipping along randomly located 
but favourably oriented grain boundaries, while the develop- 
ment of partial shear fracture seemed to take place by crack 
coalescence. A next step in our work will be to look at the 
coalescence among a population of cracks by separating the 
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population into pairs of interacting cracks in order to apply 
our procedure. 
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APPENDIX A: PROCEDURE FOR 
INTERACTING STRAIGHT CRACKS 

We use the crack geometry illustrated in Fig. 1 and consider 
two straight cracks indexed (1) and (2).  We have first to 
determine the initial boundary conditions on both cracks, that 
is we have to define whether cracks are open or closed. Each 
point of crack (1)  is subjected to the normal stress N w l  and 
the shear stress T"' due to the applied external stresses o1 
and cr2. Similarly, crack ( 2 )  is subjected to stresses N w 2  and 
Tm2. Crack opening is calculated from the displacements on 
both cracks. The conformal mapping technique leads to the 
following expression for the two components u, and uy of the 
displacement vector u (Muskhelishvili 1977): 

where M is the shear modulus, K = 3 - 4v (plane strain) or 
( 3  - v)/( 1 + v)  (plane stress), where v is Poisson's ratio. The 
function 2 = w ( i ) ,  where 2 = x + iy and [ = p eie, is introduced 
to map an ellipse of the real plane (O,x,y) containing the 
crack onto a circle of radius p in the associated plane (0, iL, c2) .  
In our case the ellipse is a crack of half-length a, and o(i) is 
defined by (Muskhelishvili 1977) 

The complex potentials yl(i) and $ ( c )  are obtained as the 
sum of the contributions of all stressed segments of a crack. 
Each segment is defined by its extremities z,(x,,y,) and 
z2(x2, y 2 ) ,  which are associated with z1 and z2 in the plane 
(0, il. c 2 )  respectively. If N and T are the normal and shear 
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stresses applied to the segment, the elementary potentials for 
the segment can be written (Pollard & Holzhausen 1979) 

x log( q) + (i + [ - I -  t2  - t ; l )  
z;l- 

+ T" {- 4 log (:) 
471 " ( 2 -  1 )  

We start with crack (2) .  Its aperture is calculated using eqs 
( A l l  and (A3),  where N = NmZ and T =  Tm2. If the crack is 
open, its surface is stress-free, that is the boundary conditions 
on crack (2)  are written 

In this case, we start the iterative scheme by calculating the 
stress components induced on crack ( 1 )  by the presence of 
crack ( 2 )  loaded by Nw2 and Tm2. Otherwise, if crack (2)  is 
closed, friction has to be taken into account by introducing p ,  
the coefficient of friction. Since crack (2) is closed, the normal 
stress Nm2 acting on its surface does not induce any additional 
stresses on crack ( 1 ) .  It follows that it is only the effective 
shear stress 1Tw21 - pINm2) acting on crack ( 2 )  that induces 
stresses on crack (1  j. 

In both cases, the stress components acting on crack (1) are 
determined using eq. (A3) and the following equations relating 
stresses to complex potentials: 

This leads to a normal stress or;@) and a shear stress 
o$:(x) acting on crack ( l ) ,  which are the first interaction terms. 
The total stress field acting on crack ( 1) after the first iteration 
step is then written as 

We determine the aperture of crack ( 1 ) .  This is done using 
eqs ( A l )  and (A3), where N = ~ ; ~ ( x )  and T =  O:~(X). If crack 
(1) is open, boundary conditions similar to (A4) have to be 
fulfilled. It means that we have to counterbalance the excess 
stresses a$'(x) and a$(x) by applying stresses of the opposite 
sign. If crack ( 1 ) is closed, we only apply the excess effective 
shear stress la$(x)l - pla$)(x)l. As a result we obtain excess 
stresses o$i(v) and oltt(v) on crack ( 2 )  by applying eqs (A31 
and (A5).  The total stress field acting on crack (2)  after the 
first iteration step is then written as 

ob(v) = Tm2 + oi$(v), 

.',,(v) = Nm2 + a$/,,(v). 

We now return to crack ( 2 )  and apply the same procedure 
recursively. At each step we calculate the excess stresses 
applied on both cracks, add them to the total stresses already 
accumulated on the cracks, and counterbalance them to fulfil 
the appropriate boundary conditions. We stop the procedure 
when the excess stresses are less than a given fraction ( w5)  
of the total stresses. The result of the iterative procedure is the 
stress field in the solid containing the two interacting cracks. 
In particular, the stresses acting on the cracks are given by 

In order to use this iterative procedure for the computation 
of the propagation paths of interacting cracks, we have to 
determine the stress intensity factors K ,  and K ,  for both 
cracks. They can be written (Sih & Liebowitz 1968) 

K,-iKl,=2 -q'((= k l ) ,  J: 
where eq. (A3) has been used with N = aFy(x) or a',Jv), and 
T=ozy(x) or of(v), depending on the crack we are looking 
at. The sign + (-) holds for the + (-) n crack tip. 
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