Combining InSAR and GNSS to model magma transport during the May 2016 eruption of Piton de la Fournaise Volcano (La Réunion Island).

Delphine Smittarello

ISTerre Volcano Geophysics

October 17, 2019

Co-Authors: V. Cayol¹, V. Pinel², J-L. Froger¹, A. Peltier ³ and Q. Dumont¹

¹LMV, OPGC, Clermont-Ferrand, France ²ISTerre, Volcano Geophysics, Chambéry, France ³OVPF-IPGP, La Réunion, France

Smittarello D. (ISTerre)

Combining InSAR and GNSS

14

Magma transport at basaltic volcanoes

Dikes and Sills propagation lead to fissural eruptions

Eruptive Fissure, July 14, 2017, Piton de la Fournaise

Eruptive Fissures, July 13, 2018, Piton de la Fournaise

Magma transport at basaltic volcanoes

Magma can propagates tens kilometers potentially reaching inhabited areas and man-made infrastructures.

Eruptive fissures and lava flows, May 2018, Leilani Estate, Hawaii (USA) *(Photos USGS)* Mitigating this risk implies a better understanding of what happens between the reservoir and the surface

An active and well monitored volcano

18 eruptions since 2014 The May 2016 eruption lasted 27 hours producing 0.5 $\rm Mm^3$ of lava flow

InSAR Data provide high spatial resolution

May 2016 : - 6 interferograms (Sentinel et Cosmo Sky Med) along 4 different LOS: ascending and descending

Sentinel Ascending 19/04 - 06/06

Sentinel Descending 20/04 - 07/06

Smittarello D. (ISTerre)

InSAR Data provide high spatial resolution

May 2016 : - 6 interferograms (Sentinel et Cosmo Sky Med) along 4 different LOS: ascending and descending

Sentinel Descending 20/04 - 25/05

Sentinel Descending 25/05 - 07/06

Smittarello D. (ISTerre)

GNSS Measurements provide high temporal resolution

How to combine spatial and temporal information from InSAR and GNSS ?

Inversion of ground deformation data

Forward modeling : Mixed Boundary Elements Method (Cayol and

- Cornet, 1997)
- ightarrow Topography
- ightarrow Complexe fracture
- Hypotheses :
- ightarrow Linear elasticity
- \rightarrow Homogeneous and isotropic medium

nedium Iterative search example: 7th iteration

Position and location of the triangle bottom line: unknown

Non linear Inversion: Neighbourghood Algorithm (*Sambridge*, 1999) Minimizing cost function

$$U = (d_o - Gm)^T C_d^{-1} (d_o - Gm)$$

Intrusion geometry from Inversion of 4 SAR images

Two model families - same misfit

Two model families - same misfit

InSAR provides geometrical a priori

GNSS temporal information helps solving modeling ambiguities

A step-wise lateral propagation of a single small batch of magma disconnected from its feeding reservoir.

- Mean horizontal velocity : 0.6 m.s⁻¹
- Max horizontal velocity : 2 m.s⁻¹

Quick lateral propagation, arrest then vertical propagation

Combining InSAR and GNSS

Conclusions

Methods

- InSAR provides high spatial resolution
 => geometrical a priori required for GNSS inversion
- GNSS discriminates between families of equally likely models => timing
- Advantages of both datasets characteristics.

Process

- A small amount of magma was trapped into a sill (*preexisting discontinuity* ?)
- External change of the stress field (east flank sliding ?)
- Internal change of buoyancy (gas accumulation ?)

Smittarello, D.; Cayol, V.; Pinel, V.; Peltier, A.; Froger, J.L.; Ferrazzini, V. Magma Propagation at Piton de la Fournaise From Joint Inversion of InSAR and GNSS. *J. Geophys. Res. Solid Earth* **2019**, 124, 1361–1387. doi:10.1029/2018JB016856

Smittarello, D.; Cayol, V.; Pinel, V.; Froger, J.L.; Peltier, A.; Dumont, Q. Combining InSAR and GNSS to Track Magma Transport at Basaltic Volcanoes. *Remote Sens.* **2019**, 11, 2236. doi:10.3390/rsxx010005

An atypical seismic crisis starts on May 25, 2016

- A long crisis : 8h25min
- An eruptive vent not so far : 2.8km

• 2 peaks of seismic activity

An atypical seismic crisis starts on May 25, 2016

Why is the magma trapped for 5h before erupting ?

An atypical seismic crisis starts on May 25, 2016

What finally triggered the eruption ?

-0.3 -0.2 -0.1 0 0.1 0.2 Displacement along the LOS (m) 0.3

364