

Gap-filling of InSAR displacement time series

Alexandre Hippert-Ferrer¹, Yajing Yan¹, Philippe Bolon¹

¹Laboratoire d'Informatique, Systèmes, Traitement de l'Information et la Connaissance (LISTIC), Annecy, France

Wednesday, October 16

1/20

Context and motivation	The EM-EOF method	Numerical simulations	Applications	Conclusion and perspectives
Introduction				

- Missing data is a frequent issue in SAR-derived products in both space and time.
- It can prevent the full understanding of the physical phenomena under observation.
- **Causes** : rapid surface changes, missing image, technical limitations.

Context and motivation	The EM-EOF method	Numerical simulations	Applications	Conclusion and perspectives O
Motivation of th	ne study			

Handling missing data in InSAR displacement time series

- Classical approach : spatial interpolation
- Not exploited (yet) : temporal information

\rightarrow Manage spatio-temporal missing data in time series \leftarrow

Proposed : a statistical gap-filling method addressing

- 1. Randomness and possible space time correlation of
 - Noise
 - Missing data
- 2. Mixed frequencies displacement patterns (complex signals)

Context and motivation	The EM-EOF method	Numerical simulations	Applications	Conclusion and perspectives
Expectation N	/laximization-Er	npirical Orthogo	onal Functio	ns

Key components of the proposed method :

- Signal learned as empirical orthogonal functions (EOFs).
- Low rank structure of the sample temporal covariance matrix.
- Reconstruction with appropriate initialization of missing values¹.
- Expectation-Maximization (EM)-type algorithm for resolution.

^{1. [1]} Beckers and Rixen, "*EOF calculations and data filling from incomplete oceanographics datasets*," J. Atmos. Oceanic Technol., vol.20(12), pp.1836-1856, 2003

Context and motivation	The EM-EOF method ○●○○○○	Numerical simulations	Applications	Conclusion and perspectives
EM-EOE · dat	a representatio	n and initializati	on	

■ Let **X**(**s**, *t*) be a spatio-temporal field containing the values of **X** at position **s** and time *t*:

$$\boldsymbol{X} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n) = \begin{pmatrix} x_{11} & x_{12} & x_{13} & \cdots & x_{1n} \\ x_{21} & x_{22} & x_{23} & \cdots & x_{2n} \\ x_{31} & x_{32} & x_{33} & \cdots & x_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{p1} & x_{p2} & x_{p3} & \cdots & x_{pn} \end{pmatrix}$$

 $(x_{ij})_{1 \le i \le p, 1 \le j \le n}$ is the value at position \mathbf{s}_i and time t_j and may be missing.

Missing values are then initialized by an appropriate value (first guess).

Context and motivation	The EM-EOF method	Numerical simulations	Applications	Conclusion and perspectives
EM-EOF : cov	variance estima	tion and decom	position	

The sample temporal covariance is first estimated :

$$\hat{\boldsymbol{\Sigma}} = \frac{1}{\boldsymbol{p}-1} (\boldsymbol{X} - \boldsymbol{1}_{n} \boldsymbol{\bar{X}})^{T} (\boldsymbol{X} - \boldsymbol{1}_{n} \boldsymbol{\bar{X}})$$

Context and motivation	The EM-EOF method ○○●○○○	Numerical simulations	Applications	Conclusion and perspectives
EM-EOF : cov	ariance estima	tion and decom	position	

The sample temporal covariance is first estimated :

$$\hat{\boldsymbol{\Sigma}} = \frac{1}{\rho - 1} (\boldsymbol{X} - \boldsymbol{1}_{n} \bar{\boldsymbol{X}})^{T} (\boldsymbol{X} - \boldsymbol{1}_{n} \bar{\boldsymbol{X}})$$

EOFs $(\mathbf{u}_i)_{0 \le i \le n}$ are the solution of the eigenvalue problem :

 $\hat{\Sigma}\textbf{U}=\textbf{U}\Lambda$

Context and motivation	The EM-EOF method ○○●○○○	Numerical simulations	Applications	Conclusion and perspectives
EM-EOF : cov	ariance estima	tion and decom	position	

The sample temporal covariance is first estimated :

$$\hat{\boldsymbol{\Sigma}} = \frac{1}{p-1} (\boldsymbol{X} - \mathbf{1}_{\mathbf{n}} \boldsymbol{\bar{X}})^{\mathsf{T}} (\boldsymbol{X} - \mathbf{1}_{\mathbf{n}} \boldsymbol{\bar{X}})$$

EOFs $(\mathbf{u}_i)_{0 \le i \le n}$ are the solution of the eigenvalue problem :

 $\hat{\Sigma}\textbf{U}=\textbf{U}\Lambda$

EOFs can be used to express $\hat{\Sigma}$ in terms of EOF modes :

$$\hat{\boldsymbol{\Sigma}} = \lambda_1 \boldsymbol{u}_1 \boldsymbol{u}_1^T + \lambda_2 \boldsymbol{u}_2 \boldsymbol{u}_2^T + \dots + \lambda_n \boldsymbol{u}_n \boldsymbol{u}_n^T$$

Context and motivation	The EM-EOF method 000●00	Numerical simulations	Applications	Conclusion and perspectives O
EM-EOF : reco	nstruction of the	e field		

X' is reconstructed with M number of EOFs :

$$oldsymbol{X}' = \sum_{i=1}^n a_i oldsymbol{u}_i^T o oldsymbol{\hat{X}}' = \sum_{i=1}^{M \ll n} a_i oldsymbol{u}_i^T$$

with $a_i = \mathbf{X}' \mathbf{u}_i$ are the Principal Components (PCs) of the anomaly field (\mathbf{X}').

- The first EOF modes capture the main temporal dynamical behavior of the signal whereas other modes represent various perturbations².
- Goal : find the optimal M

Alexandre Hippert-Ferrer, Yajing Yan, Philippe Bolon

^{2. [3]} R. Prébet, Y. Yan, M. Jauvin and E. Trouvé, "A data-adaptative EOF based method for displacement signal retrieval from InSAR displacement measurement time series for decorrelating targets", IEEE Trans. Geosci. Remote Sens., vol. 57(8), pp. 5829-5852, 2019

Context and motivation	The EM-EOF method	Numerical simulations	Applications	Conclusion and perspectives
	000000			
Cross-validation	า			

Cross-RMSE : cross-validation root-mean-square error :

$$E(k) = \left[\frac{1}{N}\sum_{k=1}^{N}|\hat{\mathbf{x}}_k - \mathbf{x}|^2\right]^{1/2}$$

k : number of EOF modes used in the reconstruction

Key parameter : the optimal number of EOF modes *M*, estimated by :

 $\underset{M \in [1,n]}{\arg\min E(k)}$

Context and motivation	The EM-EOF method	Numerical simulations	Applications	Conclusion and perspectives	
	00000				
A 2-stage method					

Context and motivation	The EM-EOF method	Numerical simulations	Applications	Conclusion and perspectives
		000		
Numerical sir	nulations : setup)		

Displacement fields with different complexity are computed :

	$\int g(r,t)$	Order
g_1	$(1 - 0.5r)t + \sin(2\pi f_1 t)\cos(2\pi f_1 r) + 0.5\cos(2\pi f_2 t)\cos(2\pi f_3 r)$	3
g_2	$g_1 + 0.1 \sin(2\pi f_4 t) \cos(2\pi f_5 r)$	4
g_3	$A + b \exp(-t/\tau_{e}) + ct$	-
	TABLE $- f_1 = 0.25, f_2 = 0.75, f_3 = 2.5, f_4 = 1.25, f_5 = 5.$	

Context and motivation	The EM-EOF method	Numerical simulations	Applications	Conclusion and perspectives	
		000			
Numerical simulations : setup					

Displacement fields with different complexity are computed :

	g(r,t)	Order
g_1	$(1 - 0.5r)t + \sin(2\pi f_1 t)\cos(2\pi f_1 r) + 0.5\cos(2\pi f_2 t)\cos(2\pi f_3 r)$	3
g_2	$g_1 + 0.1 \sin(2\pi f_4 t) \cos(2\pi f_5 r)$	4
g 3	$A + b \exp(-t/\tau_{\theta}) + ct$	-
	TABLE $- f_1 = 0.25, f_2 = 0.75, f_3 = 2.5, f_4 = 1.25, f_5 = 5.$	

Type of noise : random ~ N(0, 1), spatially and spatio-temporally correlated
Type of gaps : random, correlated

Context and motivation	The EM-EOF method	Numerical simulations	Applications	Conclusion and perspectives O
Numerical sin	nulations : setur)		

Displacement fields with different complexity are computed :

	g(r,t)	Order
<i>g</i> ₁	$(1 - 0.5r)t + \sin(2\pi f_1 t)\cos(2\pi f_1 r) + 0.5\cos(2\pi f_2 t)\cos(2\pi f_3 r)$	3
g_2	$g_1 + 0.1\sin(2\pi f_4 t)\cos(2\pi f_5 r)$	4
g_3	$A + b \exp(-t/\tau_e) + ct$	-
	TABLE $- f_1 = 0.25, f_2 = 0.75, f_3 = 2.5, f_4 = 1.25, f_5 = 5.$	

- **Type of noise : random** $\sim \mathcal{N}(0, 1)$, spatially and spatio-temporally correlated
- Type of gaps : random, correlated
- SNR = [0.5,4.5]
- Gaps : [0,80]%
- Initialization value : spatial mean, spatial mean + random noise, spatial mean + correlated noise

Alexandre Hippert-Ferrer, Yajing Yan, Philippe Bolon

MDIS-2019

The EM-EOF method Context and motivation Numerical simulations Applications 000

Sensitivity to SNR and % of gaps

Cross-RMSE in function of % of gaps and SNR :

- The method is more sensitive to SNR than to the % of gaps
- Random gaps affect more the reconstruction than correlated (seasonal) gaps
- Initialization value affects the time of convergence but not the estimation of M

Context and motivation	The EM-EOF method	Numerical simulations	Applications •000	Conclusion and perspectives O
Data and area	a of study			
	7°			Zermatt
•		ANZ		He
Chamonix	Argentiere	AN MA	K	Gorner
A Mont Blanc			FC AL	Belgium

Glacier	Period	Platform	Data type	Size	[min, max]% missing	Missing images
Gorner	11/2016-03/2017	Sentinel-1/A	Interferometry	16	[11.8, 27.8]%	4
Miage	12/2016-03/2017	Sentinel-1/A	Interferometry	13	[11.4, 23.1]%	3
Argentière	10/2016-12/2017	Sentinel-1/A/B	Offset tracking	65	[2, 50]%	0

TABLE - Time series description.

7°

France

A. Hippert-Ferrer, Y. Yan and P. Bolon, Em-EOF : gap-filling in incomplete SAR displacement time series, 2019, in revision.

- Number of EOF modes : 3
- Consistent pattern in missing data areas
- Missing interferogram is reconstructed by adding the temporal mean to the anomaly.

- Number of EOF modes : 2
- Discontinuities in the residuals due to phase jumps in the original interferogram.
- Detection and correction of inconsistencies.

Context and motivation	The EM-EOF method	Numerical simulations	Applications	Conclusion and perspectives
Conclusion				

Conclusion

EM-EOF : a new method to handle complex cases

- Missing interferograms
- Discontinuities due to phase jumps (coherence loss)
- Allows to increase the effective size of a time series.
- Limitations
 - More sensitive to SNR than to % of gaps.
 - Argentière case : some breakdown points \rightarrow potential for improvement

Perspectives

- Estimation of a covariance matrix with missing data
- Time series of complex interferograms before unwrapping
- Applications : slow slip event, glacier velocities from optical data...

Thank you for your attention.

- J. M. Beckers and M. Rixen. EOF calculations and data filling from incomplete oceanographics datasets. J. Atmos. Oceanic Technol., 20(12) :1836–1856, 2003.
- [2] R. Fallourd, O. Harant, E. Trouvé, and P. Bolon. Monitoring temperate glacier displacement by multi-temporal TerraSAR-X images and continuous GPS measurements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 4(2): 372–386, 2011.
- [3] R. Prébet, Y. Yan, M. Jauvin, and E. Trouvé. A data-adaptative eof based method for displacement signal retrieval from insar displacement measurement time series for decorrelating targets. IEEE Trans. Geosci. Remote Sens., 57(8) :5829–5852, 2019.

This work has been supported by the Programme National de Télédétection Spatiale (PNTS, http://www.insu.cnrs.fr/pnts), grant PNTS-2019-11, and by the SIRGA project.

Worst case scenarii

Correlated gaps :

1 EOF - 70% gaps - SNR=0.52 - 72 iterations

Random gaps :

Alexandre Hippert-Ferrer, Yajing Yan, Philippe Bolon

Computation of a correlated noise

From an autocorrelation function $c(r) = r^{-\beta}$ and a white noise image *b* :

- 1. Compute power spectral density of $c : \Gamma(c) = |\mathcal{F}\{c\}|$
- 2. Compute FT of $b : \mathcal{F}{b}$
- 3. Do some filtering : $\mathcal{F}{b}\Gamma(c)$
- 4. Compute $\mathcal{F}^{-1}{\mathcal{F}{b}}{\Gamma(c)}$