Rapid detection of triggered landslides using satellite radar coherence

Katy Burrows¹, Richard Walters¹, David Milledge², Alexander Densmore³

- 1. COMET, Department of Earth Sciences, Durham University
- 2. School of Engineering, Newcastle University
- 3. Department of Geography, Durham University

Motivation

- Information on triggered landslides is needed within days of an earthquake
- When the weather is cloudy, optical satellite imagery cannot be used for postevent landslide mapping

Satellite Radar Coherence

- Sensitive to changes in the ground surface between image acquisition
- Currently used to detect building damage (e.g. Yun et al. 2015)
- Capable of detecting earthquaketriggered landslides (demonstrated by e.g. Yun et al. 2015, Burrows et al. 2019)
- How generally applicable are coherence methods?

20180809-20180823

-π

Case Studies

Gorkha, Nepal, 2015

Hokkaido, Japan, 2018

Roback et al. (2018)

Zhang et al. (2019)

Coherence Change in Time

The ARIA method

Yun et al. (2015)

Modified post-event ARIA method

Down+up method

Maximum(Down, up) method

The Bx-S method

Pixels used in coherence estimation

All pixels classified as 'landslide'

ROC Analysis

- Assess continuous classifiers without applying a threshold
- Area under the curve describes the overall classifier performance

			Hokk	aido		Nepal			Event
		Sentinel-1		ALOS-2		Sentinel-1		ALOS-2	Satellite
		68A	46D	116A	18D	85A	19D	T157A	Track number
post- vent nage	ARIA								
	Bx-S								
1 ()	Waiting time	8	0	1	1	8	4	7	
nt	ARIA post								
oost-ever images	Down+up								
	Max(down,up)								
2	Waiting time	20	12	15	15	20	16	91	

			Hokkaido				Nepal	Event	
		Senti	Sentinel-1		ALOS-2		Sentinel-1		Satellite
		68A	46D	116A	18D	85A	19D	T157A	Track number
0 H	ARIA						0.66		
post even mage	Bx-S						0.74		
1 6 ii	Waiting time	8	0	1	1	8	4	7	
nt	ARIA post								
ever ges	Down+up								
post- ima	Max(down,up)								
7	Waiting time	20	12	15	15	20	16	91	

0.5	Random
0.5-0.6	Unuseable
0.6-0.7	Poor
0.7-0.8	Fair
0.8-0.9	Good
0.9-1.0	Excellent

Burrows et al. (2019)

Result: The ARIA method, Sentinel-1, Nepal

Result: The ARIA method, Sentinel-1, Nepal

Result: The Bx-S method, Sentinel-1, Nepal

			Hok	kaido		Nepal			Event
		Sentinel-1		ALO	ALOS-2 Se		Sentinel-1		Satellite
		68A	46D	116A	18D	85A	19D	T157A	Track number
	ARIA						0.66		
post even nage	Bx-S						0.74		
1 ji	Waiting time	8	0	1	1	8	4	7	
ηt	ARIA post								
ever ges	Down+up								
post- ima	Max(down,up)								
5	Waiting time	20	12	15	15	20	16	91	

0.5	Random
0.5-0.6	Unuseable
0.6-0.7	Poor
0.7-0.8	Fair
0.8-0.9	Good
0.9-1.0	Excellent

Burrows et al. (2019) *Remote Sensing*

			Hokkaido				Nepal	Event	
		Senti	Sentinel-1		ALOS-2		Sentinel-1		Satellite
		68A	46D	116A	18D	85A	19D	T157A	Track number
	ARIA	0.54	0.58	0.73	0.83	0.55	0.66	0.76	
post even mag	Bx-S	0.58	0.60	0.57	0.46	0.65	0.74	-	
1 6 ii	Waiting time	8	0	1	1	8	4	7	
ηt	ARIA post	0.84	0.82	0.67	0.74	0.61	0.62	0.79	
ever ges	Down+up	0.77	0.78	0.72	0.82	0.61	0.68	0.84	
post- ima	Max(down,up)	0.80	0.79	0.68	0.84	0.58	0.66	0.80	
7	Waiting time	20	12	15	15	20	16	91	

0.5	Random
0.5-0.6	Unuseable
0.6-0.7	Poor
0.7-0.8	Fair
0.8-0.9	Good
0.9-1.0	Excellent

ARIA performs fairly well using ALOS-2 data but poorly with Sentinel-1

				Hok	kaido			Nepal		Event		
			Senti	nel-1	ALC	ALOS-2		Sentinel-1 ALOS-2		Satellite		
			68A	46D	116A	18D	85A	19D	T157A	Track number		
	1 post- event image	ARIA	0.54	0.58	0.73	0.83	0.55	0.66	0.76		0.5	Random
		Bx-S	0.58	0.60	0.57	0.46	0.65	0.74	-		0.5-0.6	Unuseable
		Waiting time	8	0	1	1	8	4	7		0.6-0.7	Poor
	nt	ARIA post	0.84	0.82	0.67	0.74	0.61	0.62	0.79		0.7-0.8	Fair
	2 post-ever images	Down+up	0.77	0.78	0.72	0.82	0.61	0.68	0.84		0.8-0.9	Good
		Max(down,up)	0.80	0.79	0.68	0.84	0.58	0.66	0.80		0.9-1.0	Excellent
		Waiting time	20	12	15	15	20	16	91			

Bx-S is the bestperforming method in Nepal but performs badly in Hokkaido

				Hokk	kaido			Nepal		Event		
			Senti	nel-1	ALC	ALOS-2		Sentinel-1 ALOS-2 Sa		Satellite		
			68A	46D	116A	18D	85A	19D	T157A	Track number		
		ARIA	0.54	0.58	0.73	0.83	0.55	0.66	0.76		0.5	Random
	post :vent nage	Bx-S	0.58	0.60	0.57	0.46	0.65	0.74	-		0.5-0.6	Unuseable
	ii e T	Waiting time	8	0	1	1	8	4	7		0.6-0.7	Poor
ſ	ηt	ARIA post	0.84	0.82	0.67	0.74	0.61	0.62	0.79		0.7-0.8	Fair
	ever ges	Down+up	0.77	0.78	0.72	0.82	0.61	0.68	0.84		0.8-0.9	Good
	post- ima	Max(down,up)	0.80	0.79	0.68	0.84	0.58	0.66	0.80		0.9-1.0	Excellent
	2	Waiting time	20	12	15	15	20	16	91			

Methods incorporating both the co-event coherence decrease and post-event increase in coherence are the most consistent

			Lak	(aida			Nonal	consist		
			ПОККАТОО				мера	1	Event	
		Sentinel-1		ALC)S-2	Senti	nel-1	ALOS-2	Satellite	
		68A	46D	116A	18D	85A	19D	T157A	Track number	
	ARIA	0.54	0.58	0.73	0.83	0.55	0.66	0.76		
post even mage	Bx-S	0.58	0.60	0.57	0.46	0.65	0.74	-		
1 e	Waiting time	8	0	1	1	8	4	7		
nt	ARIA post	0.84	0.82	0.67	0.74	0.61	0.62	0.79		
post-ever images	Down+up	0.77	0.78	0.72	0.82	0.61	0.68	0.84		
	Max(down,up)	0.80	0.79	0.68	0.84	0.58	0.66	0.80		
2	Waiting time	20	12	15	15	20	16	91		

0.5	Random
0.5-0.6	Unuseable
0.6-0.7	Poor
0.7-0.8	Fair
0.8-0.9	Good
0.9-1.0	Excellent

Result: ROC Analysis

Landslide inventory from Roback et al. (2018) Geomorphology

Landslide inventory from Roback et al. (2018) Geomorphology

Result: the Down+Up method 42

ALOS-2 Hokkaido

Landslide inventory from Zhang et al. (2019) Landslides

Result: the Down+Up method

ALOS-2 Hokkaido

Landslide inventory from Zhang et al. (2019) Landslides

Conclusions

SAR coherence methods are capable of large-scale landslide detection

With only 1 post-event image: use ARIA with ALOS-2

With only Sentinel-1: use Bx-S

Methods using 2 post-event images are more consistent, but have a longer wait time

Future work: combine more surfaces in a more sophisticated way and test on more events

For more info: Burrows et al. (2019) *Remote Sensing*; Burrows et al. (in prep)

Email <u>katy.a.burrows@durham.ac.uk</u>

twitter: @katyburrows3

Case Studies: 2015, Gorkha, Nepal and 2018, Hokkaido, Japan

- Different topography
- Different spatial distribution of landslides
- Different lithology
- Different Weather Conditions

Inventory for Nepal from Roback et al. (2018) *Geomorphology* Inventory for Hokkaido from Zhang et al. (2019). *Landslides*

Satellite Radar

Phase change and Amplitude can be visualised as arrows Phase change between two images = arrow direction

Satellite Radar Coherence

The spatial consistency in phase change

Contains information on how the ground surface changes in the time between the acquisition of two images

