Using multi-sensor data to characterise the dynamic of magmatic systems along the East African Rift

Fabien Albino¹, Juliet Biggs¹ T. Wright², C. Moore², T. Temtime¹, R. Lloyd¹, C. Pagli³

- ¹ University of Bristol, NERC-COMET, UK ² University of Leeds, NERC-COMET, UK
- ³ Istituto Nazionale di Geofisica e Vulcanologia, Pisa, Italy

Volcanism in a rift setting

Why the study of rift volcanism is important?

- Activity: Many events as extension regime facilitates magma transport
- **Diversity**: Eruptive style ranges from mafic fissures to silicic caldera
- **Complexity**: Interaction between rifting and magmatism

...but land observations are limited: Iceland and East African Rift

Information from ground deformation

Information from ground deformation

Complementarity of SAR data

- Open-data
- High temporal resolution: 6-12 days
- Lifetime: 7 years per satellites
- Available in near real-time

- Combination of InSAR results
- Long-term survey (10-20 years)
- Subduction arc (Andes)

Tasks of the project

1- Sentinel-1 InSAR survey (2014-2019)

2- Comparison with previous InSAR survey (ENVISAT, ERS)

3- Combination with additional dataset: Thermal time series (ASTER), Cornell University

4- Modelling the sources of deformation

Tasks of the project

1- Sentinel-1 InSAR survey (2014-2019)

2- Comparison with previous InSAR survey (ENVISAT, ERS)

3- Combination with additional dataset:

- a) thermal time series (ASTER)
- b) gravimetry survey (field work in January 2020)

4- Modelling the sources of deformation

METHOD

LiCSAR: automated Sentinel-1 InSAR processing

- Processing the three short-duration interferograms
- Operational on about 900 active volcanoes
- Current database: **32.000** subset interferograms on Africa volcanoes

Mean LOS velocity (m/yr)

RESULTS

Studied area: ~80 active volcanoes

AFAR: ERS and ENVISAT survey

Dabbahu 2005 rifting event

Wright et al., 2006 Alu-Dalafilla 2008 eruption

Gada Ale (1993-1996)

Amelung et al., 2000

Dallol 2004 intrusion

Nobile et al., 2012

And many more...

AFAR: Dallol Sentinel-1 survey (2015-2019)

AFAR: Erta Ale Sentinel-1 survey (2015-2019)

AFAR: Gada Ale Sentinel-1 survey (2015-2019)

AFAR: Gada Ale Sentinel-1 survey (2015-2019)

(Amelung, 2000)

Same location

- Slower rate: 1.1 cm/yr (3.7 cm/yr in 1993-1996)
- Dislocation Model: a combination of contraction of source + normal faulting (sill intrusion?)
- Is the source persistent from 1993 to 2019?

ERS 1993-1996

4- Main Ethiopian rift: ENVISAT survey (2004-2010)

Biggs et al., 2011

Unrest at 4 volcanic centers

- Haledebi: inflation ~3 cm
- Bora: inflation 2-5 cm, 2 pulses
- Alutu: rapid inflation 10-15 cm, 2 pulses
- Corbetti: inflation 5 cm

MER: Bora - Tullu Moye Sentinel-1 survey (2015-2019)

MER: Corbetti caldera Sentinel-1 survey (2015-2019)

MER: Corbetti caldera Sentinel-1 survey (2015-2019)

- Consistent with recent studies, which reported ~5 cm/yr
- From previous sensors, we know the inflation started in mid-2019
- Magmatic origin validated by gravimetry measurements (Gottsman, Nature communication, in review)

MER: Fentale Sentinel-1 survey (2015-2019)

4- Kenyan rift: ERS and ENVISAT survey (1997-2008)

Biggs et al., 2009

Unrest at 4 volcanic centers

- Paka: 21.3 cm of inflation (2006-2007)
- Menengai: -3 cm of subsidence (1997-2000)
- Longonot: 9.2 cm of inflation (2004-2006)
- Suswa: -4.6 cm of subsidence (1997-2000)

Kenyan rift: Paka Sentinel-1 survey (2015-2019)

- No clear signal as all points have the same behaviour
- Profiles indicate a strong correlation with topography
- Need atmospheric correction

Kenyan rift: Olkaria Sentinel-1 survey (2015-2019)

- Olkaria volcanic complex
- 6 geothermal power stations
- Olkaria I (185 MW, first operation in 1981)
- March 2016: 5-years plan to increase the capacity at this power station from 185 to 190.7 MW

Kenyan rift: Olkaria Sentinel-1 survey (2015-2019)

1800

-1

-0.95

-0.9

-0.85

Mear Mear

1800

36.25 36.3 36.35 36.4

Mear Mear

Kenyan rift: Suswa Sentinel-1 survey (2018-2019)

Kenyan rift: Suswa Sentinel-1 survey (2018-2019)

Summary of the Sentinel-1 survey

Summary of the Sentinel-1 survey

8 ground deformation signals detected:

- 2 linear subsidence signals due to contraction of magma bodies Gada Ale (-1.1 cm/yr, 2015-2019), Dallol (-1.9 cm.yr, 2015-2019)

- 1 subsidence signal related to geothermal exploitation Olkaria (-2.3 cm/yr, 2016-2019)

- 2 **short-term inflation** related to magma intrusions Erta Ale (days), Fentale (months)

- 1 long-term **exponential uplift** related to magma transport Tullu Moye (12 cm, 2016-2018)

- 10 years **continuous uplift** related to magma pressurization Corbetti (4-5 cm/yr, 2009-2019)

- New unrest related to the replenishment of a shallow reservoir Suswa volcano (5.6 cm, 2018-2019)

