Seafloor geodesy : concepts & applications of acoustic distancemetry & GPS/A in the North Anatolian Fault & the Lesser Antilles

<u>Pierre SAKIC</u>¹, Valérie BALLU¹, Anne DESCHAMPS², Helen PIETE², Christian BAILLARD^{1,2}, Guy WOPPELMANN¹

> 1 : LIttoral ENvironnement et Sociétés - UMR 7266 – Université de La Rochelle
> 2 : Laboratoire Domaines Océaniques - UMR 6538 – Institut Universitaire Européen de la Mer – Plouzané

Context

Observations of movements and deformations on the Earth surface using Global Navigation Systems

- 70 % of the Earth Surface is covered by water
- Oceans are the theaters of some of the most hazardous tectonic phenomea

How to extend land observation networks offshore and perform precise geodetic measurements under the seas ?

Marine geodetic techniques

Monitoring horizontal movements :

• **Relative (1) :** acoustic distancemetry between sea-floor Beacons [Chadwick et al. 1999]

 Absolute (2): positioning combining acoustic and GNSS observations
 [Spiess et al. 1998]

Substitution of electromagnetic waves by acoustic waves for time ranging

Main difficulty : modeling the sound velocity in the water for accurate ranges

Marmara Sea tectonic context

[Hergert & Heidbach 2010]

MARSITE campaign

- Offshore campaign from 28th October to 3th November on board of R/V *Pourquoi Pas* ? Join Campaign with Geomar – Kiel
- Deployment of 4 French and 6
 German beacons on both side of the main fault

Seafloor depth [m]

MARSITE : measurement strategy

1 measurement session / hour

 $D = V * \frac{T - \text{buffer}}{2}$

Determination of the mean sound speed

$$V_{harm} = \left(\frac{1}{L} \cdot \int_{X_a}^{X_b} \frac{1}{v(s)} ds\right)^{-1} \quad \tilde{V}_{harm} = \frac{1}{\frac{1}{V_a} + \frac{1}{V_b}}$$

2 strategies :

• Raw processing by determination of each range associated at every acoustic shot

•Determination of the mean range for each session with average S.V. and average

Frequency of acquisition - number of				
samples				
Logging Period		1h		
Battery		2 days		
Inclinometer		1 h		
Pressure		1 h		
Baseline		1h - 3 samples		
		1h + Log When		
Soundspeed and Temperature (SVT)		Woken		
Other parameters				
Blocking period		0 s		
Offset from start time		3 min		
Multiple sample interval	5 s			
Number of measurements				
Total number of mes . of a given				
baseline during one cycle with the 4				
fetchs		6		
Total number of SVT during one cycle				
with the 4 fetchs		8		
Daily total number of measurements				
of a given baseline		144		
Memory				
Daily number of pages	22	11		
Memory used during 1 year of				
acquisition	222	2.06 Mo		
Duration of downloading of 1 year of				
measurements, at a 6000 bps speed	5.71 min			
Battery expense (as estimated by Monitor)				
Yearly battery expense	232	28 17 Ah		
Total duration of battery		6.39 years		

MARSITE : preliminary results

1.5 days (30 & 31/10/2014) of observations with 30min spaced sessions

222222222222	ID of AMT		# of mes.	D final	Std. Dev. (1 σ)
	1	2	206+206	506,5884	0,0009
					0,0058
	1	3	200+202	544,6488	(0,0021 / 0.0016)
					0,0033
	1	4	194+185	846,6028	(0,0021 / 0.0018)
	3	2	191+197	870,4746	0,0014
	4	2	204+208	499,222	0,0013

The case of Lesser Antilles

The Archipelago is too far from the trench for observing a significal signal with on shore GNSS

Tsunamigenic Earthquake is possible (but *e.g.* 1843 event didn't broke up to the trench)

- Trench is 500km far from the islands
- ~ 5000m depth
- Distancemetery is inappropriate in this context : need of absolute positioning

GPS/Acoustics

• Spiess et al. 1998 : Deployment of anchored beacons on the sea-floor in order to monitor the displacement in an **absolute** reference frame

 regular visits of the array with a surface platform (boat, glider) or continuous measurements with a buoy

- Technique divided in 2 parts :
 - surface segment : accurate localisation of the platform with GNSS and IMU
 - underwater segment :
 - Extract a position from multi-shoots two-ways travel time
 - measurements
 - Dealing with the sound speed variations (multiple CTDs, polygonal array)

Aim :

- Positioning a moving plateform (ship) with the best accuracy
- 2. Locating the acoustic head in a absolute frame
- 3. Using multiples receivers on bord
 - Avoid technical failure
 - Make the best of each receivers, by elimination of uncorrelated errors
 - Using GNSS as IMU
- Necessity to use a PPP approach (in view of Carabean configuration)
- 5. Need of (good) topometric ties between the instruments

GNSS post-processing :

- Differential approach
 - Track
 - RTKLIB
 - IGS BRST station as reference
- PPP approach :
 - GINS (CNES)
 - GIPSY (JPL/NASA)
- 1 Hz acquisition rate
- Tropospheric model GPT2/GMF2
- Antex IGS week 1798
- IGS/CLS/JPL final orbits

Temporary GNSS configuration on R/V Pourquoi Pas ?

Surveys on 2 points (P1 & P2), sighting reflectors on antennas, reference points of the ship & controls points

A2

Cumulative observations of each points, in order to reduce noise (12 stations on P1 and P2, 10 shoots on each point)

P3

ffreme

results on Albert Lucas : GAV1 (GNSS « Avant » / Bow) results

	(m)	RMS 3D	RMS 2D	σ 3D	
	TRACK	0,0050	0,0059	0,0013	Tha
solution as	GINS	0,0443	0,0098	0,0196	ENS
reference	GIPSY	0,0303	0,0144	0,0255	run

Thanks to P. Bosser – ENSTA/IGN for GIPSY ^{run}12

results on Albert Lucas : GTR1 (GNSS « Tribord » / starboard)

	(m)	RMS 3D	RMS 2D	σ 3D
	TRACK	0,0048	0,0055	0,0017
solution as	GINS	0,0398	0,0092	0,0249
reference	GIPSY	0,0297	0,0152	0,0199

results on Albert Lucas

GOR1 differential cinematic positioning, with differents reference stations (*BRST* ~5km, *RENN* ~100km, *SMNE* ~500km)

« off-the-shelf » solution ?

Off shore positioning materials developped by privates compagnies

Results:

Beacon Boxin	Beacon Eastings	Beacon Northings	Beacon Depth	Sound Velocity	Transceiver Starboard Offset	Transceiver Forward Offset
Before	388670.95m	5353683.72m	34.68m	1492.64m/s	0.00m	0.00m
Calculated	388670.82m	5353683.75m	34.91m	1495.68m/s	0.13m	-0.05m
Calculated Accuracy	0.01m	0.01m	0.01m	0.19m/s	0.01m	0.01m

Transceiver Attitude	Pitch Correction	Roll Correction	Heading Correction
Before	-0.12º	-0.19º	0.28º
Calculated	-0.09º	-0.03º	0.47º
Calculated Accuracy	0.01	0.01º	0.03º

Statistics:

	Before CASIUS (distance)	After CASIUS (distance)	Before CASIUS (% depth)	After CASIUS (% depth)
39.4% Beacon Positions (1 sigma)	0.4m	0.2m	1.03	0.65
50.0% Beacon Positions (CEP)	0.4m	0.3m	1.20	0.76
63.2% Beacon Positions (1 Drms)	0.5m	0.3m	1.38	0.92
86.5% Beacon Positions (2 sigma)	0.7m	0.5m	1.94	1.43
98.2% Beacon Positions (2 Drms)	1.0m	0.7m	2.73	2.13

Powerful processing chain but Insufficient accuracy of absolute positionning

Final position compensation Concept Distance X,Y,Z of the 3 A priori position between Least Square GPS onboard each GPS Adjustement (w = 1cm)w = 5mmCorrected position **Known Length** X,Y,Z of a reference point

Residuals before and after adjustment on the distances

Difference between adjusted position and a priori position

Missing orientation constraint

Perspectives

Precise Positioning Validation

Processing of the topometric and GNSS data of the MARSITE campaign

Acoustics ranging simulations

Tectonic deformation modelisation

Using Pylith

Testing different scenarios : position and size of the blocking zone & configuration of the slab (angle, thickness, accretionary prism)

