

Terrestrial gravity field modeling by spatial means: current state of the art...

J.M. Lemoine ⁽¹⁾, S. Bruinsma ⁽¹⁾, P. Gégout ⁽²⁾, R. Biancale ⁽¹⁾, S. Bourgogne ⁽³⁾

- (1) CNES/GRGS, Toulouse, France
- (2) GET/UMR5563/OMP/GRGS, Toulouse, France
- (3) Géode&Cie, Toulouse, France

Summary

- 1. Time variable gravity field
- 2. Static gravity field
- 3. Perspectives

Satellite missions

GRACE

- Launched in 2002
- 2 satellites separated by ~220 km
- Altitude: ~ 440 km, Quasi-polar orbit (89°)
- GPS + accelerometers + SLR + K-Band Ranging
- KBR accuracy: $\sim 1 \mu m$, $0.1 \mu m/s$

GOCE

- Launched March 17, 2009 Passed on November 11, 2013
- Altitude: ~ 260 km, Inclination: 96.7°
- GPS + SLR + gradiometer (0.5 m arm length)
- Gradiometer accuracy: 4 mE at 1 Hz (\rightarrow 4 10⁻¹² m/s²/m)

LAGEOS-1 & 2, Starlette and Stella

- Passive SLR satellites
- Altitudes: 5900 km and 800 km
- Inclinations: 110° / 53° / 50° / 99°

Time-variable solutions

METHODOLOGICAL APPROACH

• Unconstrained Choleski inversion up to a certain degree cutoff:

CSR: 60, then 96, JPL and GFZ: 90

Time-variable solutions

METHODOLOGICAL APPROACH

 Constrained Choleski inversion: GRGS-RL02 (degree max: 50)

 Truncated SVD solution: GRGS-RL03 (degree max: 80)

- Mascons: GSFC Computation of the direct effect of point masses on the KBRR measurements
- "Integral of Energy" technique: Ramillien & Seoane
 Based on the equivalence between kinetic and
 potential energy. The velocity residuals (KBRR) are
 taken as the opposite of the potential perturbations.

Time-variable solutions

TIME SAMPLING

(all groups use dealiasing products for the atmospheric pressure and ocean response)

• Monthly: CSR, JPL, GFZ, GRGS-RL03

• 10-days: **GRGS-RL02**

1-day: BONN

Using a Kalman Filter scheme

TVG applications: 1.1 Solid Earth

On the 11th of April 2012 two major earthquakes took place at 2 hours interval.

- M=8.7, depth=22 km
- M=8.2, depth=25 km
- Strike slip fault
- Maximum horizontal slip ~ 25 m

Sumatra: 2012 earthquake

- The maximum positive and negative gravity anomaly variations are located on either sides of the intra-plate slip fault
- They form a quadrupole
- This signal appears to be rather post-seismic than co-seismic
- Only GRACE is able to bring information in such a place !!!

TVG applications: 1.2 GIA & Ice mass loss

TVG applications: 1.3 Continental hydrology

Long-term Ground Water Storage trend in the North China Plains

From Feng Wei PhD defence (November 14, 2014)

Gt/yr

	GW observations	GW bulletins	GW model	GRACE
2002-2013	-1.2 ± 0.1	-2.0		-7.1 ± 1.0
2002-2008	-1.8 ± 0.2	-2.5	-4.0	-5.0 ± 1.8

"In the North China plains, the ground water depletion rate is 2 to 4 times greater in the deep aquifers than in the shallow aquifers, due to irrigation."

TVG applications: 1.4 Oceanography

Global mean sea level rise

Altimetry

GRACE (GRGS, GFZ)

Altimetry-GRACE Steric SLV (Ishii)

Lombard et al. 2007

Lyman et al. 2006

Is the ocean cooling??

No! There are biases in expendable bathythermograph (XBT) data.

TVG applications: 1.4 Oceanography

Zapiola-Gyre test zone

cm of EWH

2010

2011

2012

Residual variance of the RL03 solutions, once the drift and the annual and semi-annual periodic terms have been removed

Comparison to altimetry	Percentage of correlation
JPL RL05	58.6 %
GFZ RL05	66.4 %
CSR RL05	69.5 %
CNES RL03	71.0 %

Official GOCE solutions

GOCE geoid height differences: DIR-R4 vs. EGM2008 (max d/o 240)

Official GOCE solutions

Latest official GOCE models: EGM-TIM-R5 and EGM-DIR-R5

GO_CONS_GCF_2_TIM_R5

spectral comparison with the model EIGEN-6C2

The graphs show:

Signal amplitudes per degree of GO_CONS_GCF_2_TIM_R5

Signal amplitudes per degree of EIGEN-6C2

Difference amplitudes per degree of GO_CONS_GCF_2_TIM_R5 vs. EIGEN-6C2

Difference amplitudes as a function of maximum degree of GO CONS GCF 2 TIM R5 vs. EIGEN-6C2

GO CONS GCF 2 DIR R5

spectral comparison with the model EIGEN-6C2

The graphs show:

Signal amplitudes per degree of GO_CONS_GCF_2_DIR_R5

Signal amplitudes per degree of EIGEN-6C2

Difference amplitudes per degree of GO_CONS_GCF_2_DIR_R5 vs. EIGEN-6C2

Difference amplitudes as a function of maximum degree of GO_CONS_GCF_2_DIR_R5 vs. EIGEN-6C2

Combined models GRACE+GOCE+surface data GRGS OMP

Next combined model will be EIGEN-6C4

From Christoph Förste (2013)

High resolution gravity models with TVG

Some high resolution gravity field models include a time-variable part, which tends to be more and more complex...

Mean models: "bias and slope" vs. "piece-wise-linear" modelling

"piece-wise-linear"

Perspectives

GRACE Follow-on is due for launch in August 2017. It will carry a laser interferometer. Expected accuracy: 50 nm/VHz

But the measurement accuracy might not be the limiting factor!... (dealiasing, etc.)

Perspectives

A Chinese GRACE mission is forecasted in 2017. It would be wonderful if it were on a different inclination than GRACE-FO...

But politics!...

Thank you for your attention

Backup slides

GSFC "mascon" technique...

 We directly estimate, from the inter-satellite K-band Range Rate data (KBRR), mass change in regions of interest as geographically specific mascons

- as opposed to global coefficients that are smoothed or averaged to reconstruct mass change locally without connection to the fundamental KBRR observations
- Uses knowledge that the geophysical signal is not distributed uniformly,
 such as the errors, but is concentrated in regions.
- This is an excellent way of filtering the solution to maximize signal to noise and to get the "filter gain" through the formal reduction of the KBRR data.

- We take advantage of the denser ground track sampling at higher latitudes by performing local cryosphere mascon solutions resulting in improved temporal and spatial resolution.
- We can further smooth our solutions by combining spatial and temporal constraint equations together with the GRACE tracking data in a simultaneous solution (as opposed to Gaussian smoothing gravity solution products a posteriori)

New modelling for the mean field

Due to the non-linear evolution of the EWH in many areas of the world (many examples: Greenland, Alaska, Murray-Darling basin, Lake Victoria...), the mean models consisting of bias, drift, annual and semi-annual terms are not adequate to represent the behaviour of the gravity field over long periods (10 years for GRACE, 30 years for Lageos considering C20).

Modelling annual bias and drift offers such advantages as:

- Better agreement with 10-day or monthly series;
- Easy introduction of jumps to account for the major earthquake deformations.

Examples on coefficients : S(10,1) and C(2,0)

Mean models: "bias and slope" vs. "piece-wise-linear" modelling

"bias and slope"

"piece-wise-linear"

Non linear behaviour of C20

C(2,0) time series from Lageos-1&2

10-day models

Non linear behaviour of C20

C(2,0) time series from Lageos-1&2

trend in modified EIGEN-6

10-day models

Non linear behaviour of C20

C(2,0) time series from Lageos-1&2

trend in modified EIGEN-6

10-day models new modelling