Relativistic Geodesy and Gravimetry with Quantum Sensors

Jakob Flury, Institut für Erdmessung (IfE) / Centre for Quantum Engineering and Space-Time Research (QUEST), Leibniz Universität Hannover

geo

Collaborative Research Center SFB 1128 geo-Q

- very low ranging noise levels achievable in outer space
- challenge: laser interferometry in Earth orbit
- different environmental conditions, different target quantity: the Earth gravitational field!

First laser interferometer between Earth orbiters

GRACE Follow-On mission 2017-2022

- experimental demonstrator on GRACE reflight
- design completed (NASA-JPL / AEI Hannover, group of Karsten Danzmann, Gerhard Heinzel)
- construction started
- test case for exploring and understanding optical gravimetry in Earth orbit

GRACE-FO Laser Ranging Interferometer (LRI)

eo

Spacecraft 2

- future missions will use laser interferometry
- dramatic improvement by multiple satellite pairs
- long lead time of space missions

science challenges:

- optical testmass readout
- interferometer configuration
- phase meters
- pointing jitter
- straylight
- system modeling
- environmental and platform effects
- ...

Centre

Enhanced resolution in gravity modeling

- laser interferometry between satellites is capable to recover temporal gravity and mass variations with significantly higher spatial resolution
- allows quantifying highly relevant geophysical processes

Optical gradiometry

Ζŧ ASH3 ASH5 ASH4 ASH2 ASH ASH6 Image credit: ESA GOCE accelerometer upper limit (Trento) geo-Q LISA requirements 10⁻³ 10^{-2} 0.1 Frequency (Hz)

GOCE accelerometer performance using data from: Stummer, Claudia S.: PhD Thesis, DGK, Reihe C, Heft 695 Torsion pendulum measurement data: courtesy of W.J. Weber, Trento

Torsion balance as test environment

eo

Atomic interferometry

- QUANTUS experiments for quantum gases in microgravity
- DLR project in Bremen drop tower

eo

• group of Ernst M. Rasel, Wolfgang Ertmer

Atomic interferometry

Transportable quantum gravimeter

Compact sensors: long term perspective

Very long baseline atom interferometry (VLBAI)

Stanford 10 m atom fountain

- Stanford, MIGA
- sensitivity ~T²
- 1 sec ~10⁻¹³ m/s²
- challenges: VLBAI gravimetry, gradiometry and fundamental physics

State of the art optical clocks

group of Piet Schmidt and Christian Lisdat

•

Chronometric leveling

geo

Steps towards chronometric leveling

existing and prospective fiber links

Clock comparison: phase-stabilized fibers

- Acoustic and thermal perturbations affect length of fiber
- frequency of transmitted light is Doppler-shifted
 - → active length stabilization of fiber required

→ proof of principle experiments PTB–LUH/MPQ 1840 km loop link with $\delta f/f \sim 4 \times 10^{-19}$ @ 100 s

Steps towards chronometric leveling

- transportable clocks for side-by-side calibration
- to eliminate residual systematic errors
- connection F D at University of Strasbourg Computing Centre

Relativistic geoid

- relativistic geoid definition: surface where clocks run with the same speed
- clock network: geoid accessible within continents

$$H = (W_0 - W_p) / \overline{g}$$

- well defined height reference
- very different from conventional height determination
- challenge: develop the foundations for chronometric leveling and relativistic geoid

ESA

towards clock based gravity reference...

Summary

Height inconsistencies

- decimeter inconsistencies
- hamper combination of tide gauges
- efforts for **height system** modernization
- **clocks** could provide **insitu cm** accuracy referred to **well-defined W**₀

geo-Q 2026

- Global change monitoring based on quantum measurement science
 - Multi-testmass interferometry in space as standard technique for sensing global mass variations
 - Quantum gravimeters rapidly and reliably monitoring sub-surface mass changes
 - Relativistic geodesy with clock networks establishing and distributing vertical reference
 - New class of gravity models integrating quantum sensor data with spatio-temporal zoom-in
- For everyday geo-applications & fundamental physics breakthroughs

J. Fraunhofer

Towards new geophysics

Towards new geophysics

Towards new geophysics

Relativistic geodesy with clocks

- fundamental relation time / frequency gravitation / height $DW = \frac{Df}{f}c^{2}$
- optical atomic clocks now approaching 10^{-18} \Leftrightarrow 0.1 m²/s² \Leftrightarrow 1 cm
- the **most accurate** physical measurement!
- towards cm precision height determination with frequency measurements
- curvature of **space-time** now relevant at the **cm level** on Earth surface!

Optical gradiometry

- challenge: exploring the metrology of optical multitestmass systems
- pm/ \sqrt{Hz} ranging
- multichannel optics, phasemeters, testmass control, ...

Future satellite gravimetry

- laser interferometric length measurements
- gravity gradiometry with atomic interferometry (ESA, NASA, ...)
- gravitational redshift, clock network in space (STE-QUEST)

 future gradiometry in combination with ranging is very promising for satellite gravimetry

Gravity sensing with atom interferometry

- matter waves of a free-falling atom cloud are coherently split, redirected and recombined with a pulsed light grating
- position information imprinted onto matter wave phase in each atom-light interaction
- measured through matter wave interferometer phase readout

Gravity signals: Glacial Isostatic Adjustment

Glacial Isostatic Adjustement (GIA) is

- revealing mass flux in Earth mantle and mantle properties
- affecting whole Earth (mm/y-level), sea level change estimates
- affecting geodetic networks
- measurement challenge, faster absolute gravimeters needed to understand regional patterns