Superconducting Gravimeters: Past, Present and Future

R.J. Warburton and P.V. Czipott GWR Instruments, Inc.

Colloque G2, Strasbourg, 19 November 2014

Why Use Superconductivity?

- Coils of superconducting wire produce a magnetic field levitating a superconducting test mass: hence the Superconducting Gravimeter (SG)
 - Magnetic levitating field provides a massless spring
 - Spherical test mass is the only moving part
- Stability of persistent supercurrents enables low (in principle, zero) drift
 - In practice, a few μGal/yr, and constant (linear)
- Noise from mechanical deformation and creep is largely frozen out at 4 K
 - Calibration constant remains constant in time over decades, to < 0.01%
 - Environmental sensitivity (ambient temperature, pressure, humidity) also largely eliminated
- However, SG requires liquid helium (LHe) for operation
 - Performance justifies the effort
 - Developments to reduce cost and complexity

The Prehistoric Past

- University of California, San Diego: Prof. J.M. Goodkind
- W.A. Prothero: Ph.D. dissertation (1967) describing first instrument
 - Experimental results: a single 10-hour time series!
 - Sensor physics and fundamentals of design remain unchanged to this day
 - Persistent currents in perfectly diamagnetic sphere generate stable levitating force
 - Must ensure that magnetic field at surface of sphere << H_c(T), the critical field of the material
 - For niobium, H_c at 4.5 K \approx 1300 Gauss
 - A single coil is inappropriate: force gradient is too strong

Control of Levitating Force Gradient

• Two coils, one approximately in plane of sphere and another below, enable adjustment of the force gradient

Basic SG Design: Invariant since Prehistory

- Persistent currents in pair of coils generates magnetic field expelled from superconducting, spherical test mass
- Field produces levitating force with weak, adjustable gradient (spring constant)
- Sphere position sensed via 3-plate capacitance bridge
- Position maintained at null via current in feedback coil; restoring force extremely linear in the current

Late Prehistory at UCSD

- R.J. Warburton and R. Reineman joined Goodkind lab to refine SG and deploy instruments for geophysical observations
- SG cooled with LHe in passive Dewars with hold times \geq 30 days
 - Refilling Dewars is laborious and causes disruptions in data quality
- Sensors deployed at sites in California and Colorado for studies including:
 - Earth tide spectroscopy (ocean/atmosphere loading, nearly diurnal free wobble, search for effects of gravitational anisotropy, etc.)
 - Hydrology (reservoir depletion/recharge at The Geysers, CA, geothermal site)
 - Earthquake prediction (search for pre-seismic crustal deformation)
 - Modeling of atmospheric loading (R.S. Spratt, Ph.D. 1981)
 - Metrology: test of the gravitational inverse square law at ~1 m mass separations (P.V. Czipott, Ph.D. 1983)

The Historical Past: GWR Instruments

• GWR founded in 1979 to deliver two instruments:

- P. Melchior, Royal Observatory of Brussels
- R. Brein and B. Richter, Institut für Angewandte Geodäsie (today, the BKG)

ROB instrument (1980) resembled UCSD cryogenics (passive Dewar)

IfAG requested active refrigeration to reduce expense: first step (1981) on long road to liquid-free operation

Parallel Development Paths

- Sensor enhancement
- Cryogenic improvement
- Other steps to reduce size, cost and complexity

Sensor Improvements, 1981-2005

- Proprietary selection and treatment of superconducting materials
 - Greatly reduced spontaneous signal offsets (tares) that occurred on older instruments
 - Reduced start-up (exponentially decaying) drifts
 - Reduced residual linear drifts (2-6 μ Gal/yr)
- Integrated capacitive tiltmeters and active tilt control
 - Eliminated spurious signals caused by slow tilting of support structures
- Higher test mass
 - Leads to reduced noise
- Slight redesign of magnetic suspension circuits
 - Greatly simplified setup and operation

Cryogenic Improvements, 1980-1992

- 1980 Baseline: passively cooled Dewar
 - 200 liter capacity, ~4 l/day boiloff (loss) of LHe
 - LHe refills needed every 30-50 days: logistics, labor, expense and data disruption
- First cryocooled Dewar, 1981 (Bad Homburg, Germany)
 - Two-stage cryocooler with 65 K and 11 K stages attached to Dewar thermal shields
 - Time between refills extended to 400 days
 - Direct attachment required Dewar warm-up to remove and service the cryocooler
- Mechanically isolated cryocooler, 1988-1992: the TT70
 - Cold head thermal contact is via He vapor in the neck of the Dewar
 - Cryocooler removable for service without sensor interruption
 - Maintained time between refills at 400 days

The Model TT70 in Operation

Installation at Cantley, Canada (1989)

Schematic of the Removable Cold Head

Cryogenic Improvements, 1993-2002

• Compact SG, 1993

- Smaller, 125 liter Dewar
- SG built directly into Dewar belly, allowing much better thermal efficiency
- TT70-style cryocooler enables >1 year interval between refills
- Structural changes to SG mount enable lower noise than previous SGs
- Eliminates need for large concrete pier
- "Assembly-line production": 11 units made, 1994-2002; 9 are still operating today

Example Installations:

Institut de Physique du Globe de Strasbourg

> Mt. Stromlo Observatory, Australian National University

Cryogenic Improvements, 1998-2002

- Ultra Long Holdtime Dewar, 1999
 - Based on 125 liter Dewar of the Compact SG series
 - Used newly available cooler with a 4.2 K cold head
 - Reliquefies He vapor and drips the liquid back into Dewar belly
 - The first closed-cycle system
 - Very reliable: ~3 years between servicing
 - Cryocooler requires 8 kW power (for compressor and water cooler)
 - 3 systems manufactured before supplier *discontinued making the cryocooler!*

Ultra Long Holdtime Dewar installed at Wetzell, Germany.

Support cranes to insert and remove cold head shown in background.

Instrument inside the Dewar is one of the first dual-sphere SGs

Cryogenic Improvements, 2003-2012

Observatory SG, OSG

- Sumitomo Heavy Industries released new closed-cycle cryocooler just in time
 - Smaller cold head easily handled by one person, without cranes
 - Compressor power usage only 1.3 kW (air-cooled)
- Enables still smaller Dewar: 35 liter capacity
 - Allows 20 days of operation following a cryocooler failure
 - Can liquefy He gas at >1 liter/day
- Allows essentially indefinite operation after initial fill

The OSG

- Available in single- and dual-sphere configurations
- Gravimeter Electronic Package
- Data Acquisition System
- GWR User Interface for Personal Computer (GWR UIPC software)
- Remote access to the data system

GWR OSG To48 at Hsinchu, Taiwan

How Good Had the SG Become?

Reference: Riccardi U., Rosat S., Hinderer J.: Metrologia 48, 28-39 (2011)

The Present: the *i*Grav[®] SG, 2012-

- Significant reductions in size, cost and complexity
 - Dewar capacity reduced to **16 liters**
 - <u>Total</u> power consumption reduced to 1.5 kW
 - No LHe required for start-up: initial cooldown starts with room-temp compressed gas
 - Weight of system excluding compressor reduced by factor of 3.4
 - From 230 kg for OSG to 68 kg for *i*Grav
 - 90% of electronics in sealed enclosure on head of Dewar
 - Enclosure filled with He gas to prevent oxidation over time
 - Provides immunity to humidity
 - Can be temperature-regulated, as needed
 - Two changes to sensor simplify setup and operation
 - Two suspension coils now connected in series in factory-set force gradient
 - Final positioning of test mass (in center of capacitance bridge) performed via small persistent current adjustment in a centering coil

The *i*Grav[®]: Small and Cute

10,000 m³ He gas cylinder for resupply in case of power failure

> 1.3 kW compressor driving 4 K cold head

DC-UPS: 24-hr battery backup in rugged outdoor enclosure

*i*Grav

Integrated electronics

Cooldown to 4 K in 5 days without use of LHe; Dewar filled in additional 5 days

Zero use of LHe in operation

>7 days operation in event of power failure or cryocooler malfunction

Electronics Comparison: OSG and *i*Grav®

*i*Grav sensor *and* electronics

OSG electronics *alone*

Electronics	<i>i</i> Grav®	OSG TREE4
Power (W)	15	250
Voltage (VAC)	28	100-220

Operating Specification Comparison

Specification	<i>i</i> Grav®	OSG
Vibration isolation system		
Weight (kg)	2.3	42.8
Weight with cryocooler cold head installed (kg)	9.5	47.7
Leveling system		
Weight of heavy thermal levelers (kg)	n/a	29.5
Weight of lighter levelers on separate base plate (kg)	8.2	n/a
Cryocooler compressor		
Height x width (cm)	42.8 x 40.6	42.8 x 40.6
Weight (kg)	61.4	61.4
Dewars	<i>i</i> Grav	OGD-42
Capacity (liter)	16	42
Height x diameter (cm)	61.0 x 30.5	139.7 x 40.6
Weight (with SG and levelers installed) (kg)	22.7	69.1
Cooldown time with refrigeration only (days)	5	7
Hold time with no cryocooler installed (days)	18	28
Hold time with cryocooler installed but off (days)	10	21
No. of He gas cylinders (10,000 l) to fill Dewar from empty	1.2	3.0

Liquid He-Free Operation

Start at room temp

Liquid begins to accumulate; sensor temperature regulation and operation begin

Apparent negative liquid accumulation is artifact of LHe level sensor at temperatures >4 K

Cooling OSG-60 in 40-liter Dewar using only compressed He gas

Simplified *i*Grav[®] Test Mass Levitation

- Magnetic gradient set permanently at GWR factory using the turns ratio between Upper and Lower Coils
- Only 2 heat switches needed: (1) series coil heat switch to adjust the current in the series coil, and (2) centering coil heat switch to center the sphere
- Centering the sphere is simple and independent of the series levitation coils; only requires a few mA current
- Levitation process can be easily learned by new users

Revolutionary Transportability of *i*Grav®

Ensenada

4) SAVSARP RB206

Long haul: two *i*Gravs and ancillary materials in a rented panel truck

Short haul: one *i*Grav behind passenger seat in extended-cab pickup truck

But How Does *i*Grav[®] Perform?

- Changes yield superior performance at lower cost
 - Smaller initial drift with quicker exponential decay
 - Low linear drifts: ~2-6 μ Gal/yr (equivalent to the OSG)
- Lack of drift or calibration change in transport: preliminary demonstration
 - Two *i*Grav SGs moved between three locations
 - Initial cooldown in Poway, CA and 4 days' operation
 - 3-day gap
 - Moved to GWR in San Diego, CA for 2.5 days' operation
 - 5-day gap
 - Moved to Tucson, AZ for 6 days' operation
 - Drift rate unchanged at < ~0.1 μGal/day
 - Relative calibrations unchanged at 0.03%

Drift of Two *i*Grav[®] SGs with Transport

No drifts removed in calculating residuals!

Stability of Relative Calibration

<u>Location</u>	<u>Coefficient</u>
Gemini, Poway, CA	1.01964 ± 1.2 × 10 ⁻⁵
GWR, San Diego, CA	1.02023 ± 5.6 x 10 ⁻⁵
SAVSARP, Tucson, AZ	1.01982 ± 1.0 x 10 ⁻⁵
Mean value	1.01989 ± 3.0 x 10 ⁻⁴

Peak-peak variation of relative scale between sites <0.06%

From the Present to the Future

- Can we further reduce the noise of the SG?
 - SG as a damped harmonic oscillator
 - Noise given by $P_A = 4 k_{Boltzmann} T (B m^{-2})$
 - Increase mass of levitated sphere
 - As long as field at surface of sphere remains $\langle H_{C}$
 - Increase the Q of the sensor by decreasing damping coefficient B

- The *i*Grav[®]: from 4D to 4C gravimetry
 - Low, stable drift and improved transportability can enable combination of continuous base station and coverage of multiple sites
 - Continuous measurements at multiple locations provide real-time spatiotemporal observation of changing mass distributions

Increased Levitated Mass

• Dual-sphere OSGs with one standard mass (4-6 g) and one higher mass (17 g)

Comparison of dual sphere OSG with STS-1 seismometer and NLNM: 10 quiet days at Black Forest Observatory,

Germany. Figure courtesy of R. Widmer-Schnidrig

Increasing the Q of the SG

Expect High-Q SG noise to decrease by factor of 20 (14 dB) compared to BFO OSG-056_L

Search for the Slichter Triplet

What can be expected of a high-Q SG?

Projected Noise Spectrum of a High-Q SG

• Assume high-Q sensor noise \cong -195 dB at 1 mHz

• Averaging just a few SGs might capture Slichter modes

Feared excess long-period noise (higher drift) from high-Q sensor

Conjectured spectrum at lower frequencies (artist's conception)

Estimated signal around 1 mHz Assumed sensor noise at 1 mHz

Increased Mass and Higher Q

- BFO dual sensor: fears that higher mass leads to higher drift
 - Because fields on sphere closer to H_C
 - Observed: lower drift than "normal" sphere
- Metsähovi dual sensor: first delivery of a high-mass, high-Q sensor
 - $Q \approx 2-2.5$, lower than the 6 imagined earlier
 - Drift is higher than *i*Grav and To20, but still linear

• The *i*OSG[™]: high-mass, high-Q observatory sensors

- Lower noise: approach NLNM for 2 mHz < f < 30 mHz
 - Reduce force gradient on sphere to lower resonance below microseisms (from ~0.3 to ~0.1 Hz)
 - Modify feedback board (e.g., to allow user-selectable feedback gain)
- Linear drift may be unchanged: 2-6 μ Gal/yr (or a bit more)
- Can dispense with the dual-sphere sensor

The *i*OSG[™]: High-Mass, High-Q SG

• First instrument: Metsähovi, Finland

SG-073: side-by-side *i*Grav[®] and *i*OSG™ sensors in single Dewar

Superconducting gravimeters o8.02. – 05.05. 2014 First 80 days of data Figure courtesy of H. Virtanen

4C: 4D Continuous Gravimetry

- Enabled by:
 - Stability and transportability of the *i*Grav[®]
 - Simpler, smaller enclosures for field use
- Southern Avra Valley Storage and Recharge Project (SAVSARP), Tucson, AZ

Shallow pier construction

Tucson AZ: The practical advantage of going

👹 Small truck or trailer transport

Seal out water from below

Set up iGFE enclosure (iGrav Field enclosure)

Set up CUFE enclosure (Compressor/UPS Field enclosure)

Reference: B. Creutzfeldt *et al., J. Geophys. Res.* **117**: Do8112 (2012).

Water Storage Basins Initially Dry

• *i*Grav[®] SGs 004 and 006 first run side by side next to Basin RB-207

*i*Grav[®] oo4 Moved to Basin RB-206

• Water then allowed to flow into basins

Excellent *i*Grav[®] Agreement with AG Data

Reference: B. Creutzfeldt et al., AGU Fall Meeting (2012).

INSTRUMENTS, INC.

Two Gravimeters at SAVSARP

 Modeled effect of wetting front propagation into soil at constant rate

Observed dq/dt and $(\Delta q/\Delta x)/dt$ • approximately agree with modeled dg/dz and $(\Delta q / \Delta x) / dz$

- Measured $\Delta q / \Delta x$ as high as 150 nm/s² over 15 m (= 10 Eö)
- Accurate $\Delta(dg/dt)$ measurement of 1 μGal/day, over 3 days
- Time scale: 20 days per division

The gradient measurement is more sensitive to infiltration through the upper soil profile. The time at which dq/dz is maximum is more readily identified, and it can be changed by moving one or both gravimeters.

Reference: J. Kennedy *et al., Geophys. Res. Lett.* **41**, doi:10.1002/2014GL059673 (2014).

15

20

25

30

4C: Truly Continuous 4D Gravimetry

- SAVSARP and other projects confirm utility of *i*Grav[®] SGs for horizontal differential gravimetry
- Further reduction in sensor and Dewar size opens up borehole (vertical differential) gravimetry
 - *i*Grav already fits existing large-diameter boreholes
 - Cryocooler demonstrated with >100 m cables, so only the sensor need be lowered

vertical difference

- Vertical differential gravimetry gives exquisite resolution of near-surface hydrological phenomena
 - Also useful for monitoring CO₂ sequestration, water displacement

vertical sum

single gravimeter

Figure courtesy of J. Kennedy

Further into the Future

- Steady improvements in SG performance enable new applications
- Steady reductions in size, cost and complexity remove barriers
- Further noise reduction *i*OSG[™] development in progress
 - Enable new observatory measurements elucidating Earth structure and dynamics
- *i*Grav[®] transportability and stability enable 4C gravimetry
 - New insights into hydrology, volcanism, and other localized processes
 - Small, simple enclosures reduce cost of SG 4C gravimetry
 - *i*Grav not far from ready for shallow borehole applications

Many thanks to GWR's customers and colleagues! Thank you for your attention!

