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Why Use Superconductivity?

* Coils of superconducting wire produce a magnetic field levitating a superconducting test
mass: hence the Superconducting Gravimeter (SG)

* Magnetic levitating field provides a massless spring
* Spherical test mass is the only moving part

* Stability of persistent supercurrents enables low (in principle, zero) drift
* In practice, a few pGal/yr, and constant (linear)

* Noise from mechanical deformation and creep is largely frozen out at 4 K
» (Calibration constant remains constant in time over decades, to < 0.01%
* Environmental sensitivity (ambient temperature, pressure, humidity) also largely eliminated

* However, SG requires liquid helium (LHe) for operation
* Performance justifies the effort
* Developments to reduce cost and complexity




The Prehistoric Past

* University of California, San Diego: Prof. J.M. Goodkind

* W.A. Prothero: Ph.D. dissertation (1967) describing first instrument
* Experimental results: a single 10-hour time series!

* Sensor physics and fundamentals of design remain unchanged to this day
* Persistent currents in perfectly diamagnetic sphere generate stable levitating force

* Must ensure that magnetic field at surface of sphere << H(T),
the critical field of the material

* Forniobium, H_at 4.5 K~ 1300 Gauss
 Asingle coil is inappropriate: force gradient is too strong




Control of Levitating Force Gradient

* Two coils, one approximately in plane of sphere and another below,
enable adjustment of the force gradient
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Basic SG Design: Invariant since Prehistory
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Late Prehistory at UCSD

* R.J. Warburton and R. Reineman joined Goodkind lab to refine SG and deploy
instruments for geophysical observations

* SG cooled with LHe in passive Dewars with hold times >30 days

Refilling Dewars is laborious and causes disruptions in data quality

* Sensors deployed at sites in California and Colorado for studies including:

Earth tide spectroscopy (ocean/atmosphere loading, nearly diurnal free wobble, search for
effects of gravitational anisotropy, etc.)

Hydrology (reservoir depletion/recharge at The Geysers, CA, geothermal site)
Earthquake prediction (search for pre-seismic crustal deformation)
Modeling of atmospheric loading (R.S. Spratt, Ph.D. 1981)

Metrology: test of the gravitational inverse square law at ~12 m mass separations (P.V.
Czipott, Ph.D. 1983)




The Historical Past: GWR Instruments

* GWR founded in 1979 to deliver two instruments:

* P. Melchior, Royal Observatory of Brussels
* R. Brein and B. Richter, Institut fir Angewandte Geodasie (today, the BKG)

ROB instrument (1980) resembled UCSD cryogenics IfAG requested active refrigeration to reduce
(passive Dewar) expense: first step (1981) on long road to liquid-free
operation
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Parallel Development Paths

* Sensor enhancement
* Cryogenic improvement

* Other steps to reduce size, cost and complexity




Sensor Improvements, 1981-2005

* Proprietary selection and treatment of superconducting materials

* Greatly reduced spontaneous signal offsets (tares) that occurred on older instruments
* Reduced start-up (exponentially decaying) drifts
* Reduced residual linear drifts (2-6 uGal/yr)

* Integrated capacitive tiltmeters and active tilt control
* Eliminated spurious signals caused by slow tilting of support structures

* Higher test mass
* Leadsto reduced noise

* Slight redesign of magnetic suspension circuits
* Greatly simplified setup and operation




Cryogenic Improvements, 1980-1992

* 1980 Baseline: passively cooled Dewar

* 200 liter capacity, ~4 |/day boiloff (loss) of LHe
* LHe refills needed every 30-50 days: logistics, labor, expense and data disruption

* First cryocooled Dewar, 1981 (Bad Homburg, Germany)
* Two-stage cryocooler with 65 K and 11 K stages attached to Dewar thermal shields
* Time between refills extended to 400 days
 Direct attachment required Dewar warm-up to remove and service the cryocooler

* Mechanically isolated cryocooler, 1988-1992: the TT70
* Cold head thermal contact is via He vapor in the neck of the Dewar
* Cryocooler removable for service without sensor interruption
* Maintained time between refills at 400 days




The Model TT70 in Operation

Installation at Cantley, Canada Schematic of the Removable Cold
Head




Cryogenic Improvements, 1993-2002
- Compact 5@, 1993

* Smaller, 125 liter Dewar
* SG built directly into Dewar belly, allowing much better thermal efficiency
* TTy0-style cryocooler enables >1 year interval between refills
* Structural changes to SG mount enable lower noise than previous SGs
* Eliminates need for large concrete pier
* “"Assembly-line production”: 11 units made, 1994-2002; g are still operating today

Example Installations:

Institut de Physique du Globe de
Strasbourg

Mt. Stromlo Observatory,
Australian National University




Cryogenic Improvements, 1998-2002

* Ultra Long Holdtime Dewar, 1999
* Based on 125 liter Dewar of the Compact SG series
* Used newly available cooler with a 4.2 K cold head
* Reliquefies He vapor and drips the liquid back into Dewar belly
* The first closed-cycle system
* Veryreliable: ~3 years between servicing
Cryocooler requires 8 kW power (for compressor and water cooler)
3 systems manufactured before supplier discontinued making the cryocooler!

Ultra Long Holdtime Dewar installed at Wetzell, Germany.

Support cranes to insert and remove cold head shown in
background. ,

Instrument inside the Dewar is one of the first dual-sphere SGs \/
Ny



Cryogenic Improvements, 2003-2012

* Observatory SG, OSG

* Sumitomo Heavy Industries released new closed-cycle cryocooler just in time
* Smaller cold head easily handled by one person, without cranes
* Compressor power usage only 1.3 kW (air-cooled)
* Enables still smaller Dewar: 35 liter capacity
* Allows 20 days of operation following a cryocooler failure
* Can liquefy He gas at >1 liter/day

* Allows essentially indefinite operation after initial fill
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How Good Had the SG Become?

PSD noise levels for SG C026, gPhone 054 and Scintrex CG5
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Subseismic band | Seismic band | Microseismicity

SG better than
STS-1 <1 mHz

| —— gPhone 054
s Scmtrex CG5

Reference: Riccardi U., Rosat S., Hinderer J.: Metrologia 48, 28-39 (2011)
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The Present: the iGrav® SG, 2012-

* Significant reductions in size, cost and complexity

» Dewar capacity reduced to 16 liters
 Total power consumption reduced to 1.5 kW
* No LHe required for start-up: initial cooldown starts with room-temp compressed gas
* Weight of system — excluding compressor — reduced by factor of 3.4
* From 230 kg for OSG to 68 kg for iGrav
* 90% of electronics in sealed enclosure on head of Dewar
* Enclosure filled with He gas to prevent oxidation over time
* Provides immunity to humidity
* Can be temperature-reqgulated, as needed
* Two changes to sensor simplify setup and operation
* Two suspension coils now connected in series in factory-set force gradient

* Final positioning of test mass (in center of capacitance bridge) performed via small
persistent current adjustment in a centering coil




The iGrav®: Small and Cute

DC-UPS: 24-hr battery
backup in rugged
outdoor enclosure

10,000 M3 He gas cylinder
for resupply in case of power
failure

iGrav
Integrated electronics

Cooldown to 4 K'in 5 days
without use of LHe; Dewar
filled in additional 5 days

1.3 kW compressor
driving 4 K cold head

Zero use of LHe in operation

>7 days operation in event
of power failure or
cryocooler malfunction




Electronics Comparison: OSG and iGrav®

Power (W) 250
Voltage (VAQ) 100-220

iGrav sensor and OSG electronics
electronics alone
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Hold time with cryocooler installed but off (days)

No. of He gas cylinders (20,000 |) to fill Dewar from empty

61.4

16
61.0X30.5
22.7

5

18

10

1.2

29.5

n/a

42.8%40.6
61.4
0OGD-42

42
139.7 X 40.6
69.1

7

28

21

3.0




Liquid He-Free Operation

Start at room temp

Neck 1
Neck 2
Belly
Body
LHe Level

Liquid begins to
accumulate; sensor
temperature regulation
and operation begin
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Apparent negative liquid
accumulation is artifact of LHe
level sensor at temperatures >4 K

4 K

Time (Days)

Cooling OSG-60 in 4o-liter Dewar using only compressed He gas




Simplified iGrav® Test Mass Levitation

* Magnetic gradient set permanently at
GWR factory using the turns ratio between

Upper and Lower Coils Fevanen

* Only 2 heat switches needed: (1) series Coil I CLERESCOL
heat switch to adjust the current in the 3 0367
series coil, and (2) centering coil heat — aw a
switch to center the sphere 4 [~y

: - i colL

* Centering the sphere is simple and 3 | SERIES COIL
independent of the series levitation coils; o PULSER
only requires a few mA current i CENTERING COIL

. Ll HEATER

* Levitation process can be easily learned E;ﬁfgg; |P”“”’ER
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Revolutionary Transportability of iGrav®

.

T™ 1099 D

Long haul: two iGravs and ancillary
materials in a rented panel truck

Short haul: one iGrav behind
passenger seat in extended-cab
pickup truck




But How Does iGrav® Perform?

* Changes yield superior performance at lower cost
* Smaller initial drift with quicker exponential decay
* Low linear drifts: ~2-6 uGal/yr (equivalent to the OSG)

* Lack of drift or calibration change in transport: preliminary demonstration
* Two iGrav SGs moved between three locations
* Initial cooldown in Poway, CA and 4 days’ operation

* 3-day gap
* Moved to GWR in San Diego, CA for 2.5 days’ operation

* 5-day gap
* Moved to Tucson, AZ for 6 days’ operation

* Drift rate unchanged at < ~0.1 pGal/day
* Relative calibrations unchanged at 0.03%




Drift of Two iGrav® SGs with Transport
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Stability of Relative Calibration

Location Coefficient
Gemini, Poway, CA 1.01964 +1.2 X 10 2
GWR, San Diego, CA 1.02023 % 5.6 X 10 2

SAVSARP, Tucson, AZ 1.01982 + 1.0 X 10 2

Mean value 1.01989 + 3.0 X104

Peak-peak variation of relative scale between

sites <0.06%

iGrav004 (Volt) vs (Volt) iGrav006 @Gemini
Linear fit coefficient: 1.0196(+/-1.2E-5)

iGrav® 006 = A * jGrav ® oo4
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From the Present to the Future

* Can we further reduce the noise of the SG?
* SG as a damped harmonic oscillator
* Noise given by P, = 4 kg jiymann T (B M™2)
* Increase mass of levitated sphere
* Aslong as field at surface of sphere remains << H,

* Increase the Q of the sensor by decreasing damping
coefficient B

* The iGrav®: from 4D to 4C gravimetry

* Low, stable drift and improved transportability can enable combination of
continuous base station and coverage of multiple sites

* Continuous measurements at multiple locations provide real-time spatio-
temporal observation of changing mass distributions




Increased Levitated Mass
* Dual-sphere OSGs with one standard mass (4-6 g) and one higher mass (17 g)
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Comparison of dual sphere OSG with STS-1 seismometer
and NLNM: 10 quiet days at Black Forest Observatory,

Germany.
Figure courtesy of R. Widmer-Schnidrig




Increasing the Q of the SG
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Search for the Slichter Triplet
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Projected Noise Spectrum of a High-Q SG

* Assume high-Q sensor noise = -195 dB at 1 mHz * Averaging just a few SGs might capture Slichter modes

Feared excess long-period noise
(higher drift) from high-Q
sensor
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Increased Mass and Higher Q

* BFO dual sensor: fears that higher mass leads to higher drift

* Because fields on sphere closer to H.
* Observed: lower drift than “normal” sphere

* Metsahovi dual sensor: first delivery of a high-mass, high-Q sensor

* Q= 2-2.5, lower than the 6 imagined earlier
* Driftis higher than iGrav and To20, but still linear

* The iOSG™: high-mass, high-Q observatory sensors

* Lower noise: approach NLNM for 2 mHz < f < 30 mHz
* Reduce force gradient on sphere to lower resonance below microseisms (from ~0.3 to ~0.1 Hz)
* Modify feedback board (e.g., to allow user-selectable feedback gain)

* Linear drift may be unchanged: 2-6 uGal/yr (or a bit more)
* Can dispense with the dual-sphere sensor




The iIOSG™: High-Mass, High-Q SG

* Firstinstrument: Metsahovi, Finland
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SG-073: side-by-side iGrav® and iOSG™ Superconducting gravimeters 08.02. — 05.05. 2014

sensors in single Dewar First 8o days of data
Figure courtesy of H. Virtanen




4C: 4D Continuous Gravimetry
* Enabled by:

* Stability and transportability of the iGrav®
* Simpler, smaller enclosures for field use

* Southern Avra Valley Storage and Recharge Project (SAVSARP), Tucson, AZ

Tucson AZ: The practical advantage of going
- ’ small

Set up iGFE enclosure - Set up CUFE enclosure
SER L e b o (iGrav Field enclosure) (Compressor/UPS Field enclosure)

Reference: B. Creutzfeldt et al., J. Geophys. Res. 117: Do8112 (2012).




Water Storage Basins Initially Dry

* iGrav® SGs 004 and 006 first run side by side next to Basin RB-207

jes and Resds:Resd Corrected_Res_iG008 (nmis"2)

' —— iGrav 004
iGrav 006
REZ00 iGrav 004 - iGrav 006
¥ — 2 uGal
I"”. A M N‘
AL ks “%‘M
| No drift or offsets removed in gravity records
- -2uGa

20 Feb 2012 24 Feb 2012 28 Feb 2012




iGrav® 004 Moved to Basin RB-206

* Water then allowed to flow into basins

iGrav 004 at RB-206

— -S2uGal No drift or offsets removed in gravity records

dg/dt = - 1.0 uGal/day dg/dt = +1.0 uGal/day

-54 uGal

-56 uGal

iGrav 006 at RB-207

dg/dt = -0.3 uGal/day




Excellent iGrav® Agreement with AG Data
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Reference: B. Creutzfeldt et al., AGU Fall Meeting (2012).




Two Gravimeters at SAVSARP

* Modeled effect of wetting front
propagation into soil at constant rate

* Observed dg/dt and (Ag/Ax)/dt
approximately agree with modeled dg/dz
and (Ag/Ax)/dz

* Measured Ag/Ax as
high as 150 nm/s?
over 15 m (=10 EO)

* Accurate A(dg/dt)
measurement of
1 uGal/day, over3
days

* Time scale: 20 days
per division

Reference: J. Kennedy et al., Geophys. Res. Lett. 41, d0i:10.1002/2014GL059673 (2014).




4,C: Truly Continuous 4D Gravimetry

* SAVSARP and other projects confirm utility of iGrav® SGs for
horizontal differential gravimetry

* Further reduction in sensor and Dewar size opens up borehole
(vertical differential) gravimetry
* iGrav already fits existing large-diameter boreholes
* Cryocooler demonstrated with >100 m cables, so only the sensor need be lowered
* Vertical differential gravimetry gives
exquisite resolution of near-surface "
hydrological phenomena
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* Also useful for monitoring CO, - ‘ -
sequestration, water displacement 5 (8 4
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Figure courtesy of J. Kennedy
vertical difference vertical sum single gravimeter



Further into the Future

* Steady improvements in SG performance enable new applications
* Steady reductions in size, cost and complexity remove barriers

* Further noise reduction —iOSG™ development — in progress
* Enable new observatory measurements elucidating Earth structure and dynamics

e iGrav® transportability and stability enable 4C gravimetry
* New insights into hydrology, volcanism, and other localized processes
* Small, simple enclosures reduce cost of SG 4C gravimetry
* iGrav not far from ready for shallow borehole applications

Many thanks to GWR’s customers and colleagues!
Thank you for your attention!




