The translational modes of the inner core : why they might not exist

Frédéric Chambat

École Normale Supérieure de Lyon Laboratoire de Géologie, Terre Planètes Environnement

Strasbourg - $19^{\rm th}$ november 2014

Yanick Ricard, Sylvie Benzoni Renaud Deguen, Thierry Alboussière Fabien Dubuffet, Elise Poupart, Noé Rabaud

Jump conditions at phase changes

Frédéric Chambat

École Normale Supérieure de Lyon Laboratoire de Géologie, Terre Planètes Environnement

Strasbourg - $19^{\rm th}$ november 2014

Yanick Ricard, Sylvie Benzoni Renaud Deguen, Thierry Alboussière Fabien Dubuffet, Elise Poupart, Noé Rabaud

글 🕨 🛛 글

- I. In which situation does the modified jump condition appears
 - II. Highlight the problem with a very simple flow-model
 - III. A method to investigate boundary conditions

< ∃→

э

I. In which situation does the modified jump condition appears

1. The Slichter mode : an oscillatory mode

< ∃ →

3

2. The permanent convective translation within the inner core

Figure 1. A schematic representation of the translation mode of the inner core, with the grey shading showing the potential temperature distribution (or equivalently the density perturbation) in a cross-section including the translation direction (adapted from Alboussière *et al.* 2010).

Figure: Deguen, 2013

Boundary condition?

э

Jump conditions at phase changes

3. The mantel convection

 $[\![\boldsymbol{\sigma}\boldsymbol{n}]\!]=0$

Notation :
$$[\sigma n] := \sigma^+ n - \sigma^- n$$

Spherical geometry :

 $\sigma_{rr}^+ = \sigma_{rr}^- \qquad \sigma_{r\theta}^+ = \sigma_{r\theta}^- \qquad \sigma_{r\phi}^+ = \sigma_{r\phi}^-.$

I will show that, at a permeable interface, like a phase change :

$$\llbracket \boldsymbol{\sigma} \boldsymbol{n} \rrbracket = \frac{2\gamma}{R} \, \boldsymbol{n} - \boldsymbol{\nabla}_{\tau} \gamma.$$

→ < E > < E > E - のQC

II. Highlight the problem :

a very simple flow-model (spherical)

문에 비문어

A simple model to highlight the problem

Density R R+dR Radus Stokes Equation, viscous linear quasi-static fluid :

 $\nabla \cdot (\rho \mathbf{v}) = \mathbf{0},$

$$\nabla \cdot \boldsymbol{\sigma} = \boldsymbol{0},$$
$$\boldsymbol{\sigma} = -\boldsymbol{\rho} \boldsymbol{I} + \eta \, \left(\nabla \boldsymbol{v} + (\nabla \boldsymbol{v})^T \right) + \lambda \left(\nabla \cdot \boldsymbol{v} \right) \boldsymbol{I}.$$

Radial symetry :

 $\boldsymbol{v} = \boldsymbol{v}(r)\boldsymbol{r},$ $\boldsymbol{\rho} = \boldsymbol{\rho}(r).$

Not essential but simplifies the proof : $\eta = \text{constant}$.

< 注→ < 注→ -

A simple model to highlight the problem

$$\nabla \cdot (\rho \mathbf{v}) = \mathbf{0},$$
$$\nabla \cdot \boldsymbol{\sigma} = \mathbf{0},$$
$$\boldsymbol{\sigma} = -\boldsymbol{\rho} \mathbf{I} + \eta \left(\nabla \mathbf{v} + (\nabla \mathbf{v})^T \right) + \lambda \left(\nabla \cdot \mathbf{v} \right) \mathbf{I}.$$

$$v = \frac{\text{Cst}}{\rho r^2}$$
$$\sigma_{rr} + 4\eta \frac{v}{r} = \text{Cst}'.$$

If $\rho \rightarrow \text{discontinuous}$:

$$\llbracket \rho v \rrbracket = 0$$
$$\llbracket \sigma_{rr} \rrbracket = -\frac{4\eta}{R} \llbracket v \rrbracket$$

$$\llbracket \sigma_{rr} \rrbracket = \frac{2\gamma}{R}.$$

but with
$$\gamma = -2\eta \llbracket v \rrbracket = -2\eta \rho v \llbracket 1/\rho \rrbracket.$$

The surface tension $\boldsymbol{\gamma}$ depends on the flow.

▲ 臣 ▶ ▲ 臣 ▶ ■ ● • • • • • •

$$\partial_r(\rho v r^2) = 0$$

$$\partial_r \sigma_{rr} + \frac{1}{r} (2\sigma_{rr} - \sigma_{\theta\theta} - \sigma_{\phi\phi}) = 0$$

$$\sigma_{rr} = -p + 2\eta \partial_r v + \lambda \partial_r (r^2 v)/r^2$$

$$\sigma_{\theta\theta} = \sigma_{\phi\phi} = -p + 2\eta v/r + \lambda \partial_r (r^2 v)/r^2$$

$$\partial_r \sigma_{rr} + 4\eta \partial_r \left(\frac{v}{r}\right) = 0.$$

We try to understand why Think of a thin balloon or a soap bubble

$$\sigma_{rr} = -p + 2\eta \partial_r v + \lambda \partial_r (r^2 v)/r^2$$

$$\sigma_{\theta\theta} = \sigma_{\phi\phi} = -p + 2\eta v/r + \lambda \partial_r (r^2 v)/r^2$$

Tectonics, deviatoric stress : push in
one direction \leftrightarrow pull perpendicular

$$\sigma_{\theta\theta} = \sigma_{rr} - 2\eta (\partial_r v_r - v_r/r).$$

$$\implies \sigma_{\theta\theta} \to \infty.$$

on the boundary. Surface tension !

< 注→

III. A method to investigate boundary conditions : discontinuous functions (distributions)

< ∃→

э

Velocity written in a discontinuous form :

$$\boldsymbol{v} = \boldsymbol{v}^{-} \mathbb{1}^{-} + \boldsymbol{v}^{+} \mathbb{1}^{+},$$

i.e.

$$\llbracket \mathbf{v} \rrbracket = \mathbf{v}^+ - \mathbf{v}^-$$

Then :

$$\boldsymbol{\nabla} \mathbb{1}^{\pm} = \pm \boldsymbol{n} \,\delta, \quad \boldsymbol{\nabla} \delta = \boldsymbol{n} \,\delta'.$$

and then

$$abla \mathbf{v} = (\mathbf{\nabla} \mathbf{v})^{-} \mathbb{1}^{-} + (\mathbf{\nabla} \mathbf{v})^{+} \mathbb{1}^{+} + \llbracket \mathbf{v}
rbracket \otimes \mathbf{n} \delta.$$

< 注→

ъ.

General result, curved interface, discontinuous viscosity :

$$\llbracket \rho \boldsymbol{v} \cdot \boldsymbol{n} \rrbracket = 0 \qquad \llbracket \sigma \boldsymbol{n} \rrbracket = \frac{2\gamma}{R} \, \boldsymbol{n} - \boldsymbol{\nabla}_{\tau} \gamma$$

with :

$$\begin{split} \gamma &= -2 \left[\!\left[\nu\right]\!\right] \rho \mathbf{v} \cdot \mathbf{n} \quad \text{surface tension} \\ &\frac{2}{R} = \boldsymbol{\nabla}_{\tau} \cdot \mathbf{n} = \text{total surface curvature} \\ &\nu &= \int \eta \partial_z \left(1/\rho\right) \, \mathrm{d}z \quad \text{the surface intrinsic property} \end{split}$$

On a plane interface with a continuous viscosity :

$$\begin{bmatrix} \rho v_z \end{bmatrix} = 0 \quad \begin{bmatrix} \sigma_{zz} \end{bmatrix} = 0 \\ \begin{bmatrix} v_x \end{bmatrix} = 0 \quad \begin{bmatrix} \sigma_{xz} \end{bmatrix} = \partial_x \left(2\eta \begin{bmatrix} v_z \end{bmatrix} \right)$$

□ > < E > < E > E - のへで

Numerical test

Figure: Velocities for the solutions as function of x and z. Left panels : numerical solution for a diffuse interface. Middle : numerical solution for a sharp interface by using the 'classical' jump conditions (continuous traction). Right : numerical solution for a sharp interface by using the 'classical' jump conditions (continuous traction).

Conclusion : when there is a mass transfert across a density jump interface, then the traction is not continuous. There is a 'dynamic' surface tension.

Prospect

- Inner-core convection
- Mantle convection (410 and 660 km phase changes)
- Rayleigh-Benard and Rayleigh-Taylor convection with phase change
- More generally fluid dynamics with phase change
- Slichter mode?
- P-SV conversion ?
- (spherical) Shock waves?
- Energy, temperature, entropy jumps?
- Mesure of the surface tension?

3.5 3

C. R. Geoscience 346 (2014) 110-118

Internal geophysics (Physics of Earth's interior)

Jump conditions and dynamic surface tension at permeable interfaces such as the inner core boundary

化压力 化压力

Frédéric Chambat^{a,*}, Sylvie Benzoni-Gavage^b, Yanick Ricard^c

^a Laboratoire de géologie de Lyon, CNRS UMR 5276, École normale supérieure de Lyon, 46, allée d'Italie, 69364 Lyon cedex 07, France ^b Institut Camille-Jordan, CNRS UMR 5208, Université de Lyon, Université Claude-Bernard Lyon-1, bâtiment Braconnier, 43, boulevard du 11-November-1918, 69622 Villentomne cedex, France

^c Laboratoire de géologie de Lyon, CNRS UMR 5276, Université de Lyon, Université Claude-Bernard Lyon-1, bâtiment Géode, 2, rue Raphaêl-Dubois, 69622 Villeurbanne cedex, France

Earth's Inner core special issue