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I. In which situation does the modified jump condition appears

1. The Slichter mode : an oscillatory mode
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2. The permanent convective translation within the inner core

Thermal convection in Earth’s inner core 1311

seismological models are consistent with the bulk of the core being
well-mixed and adiabatic, which supports the standard model of
outer core convection. Yet seismological observations indicate the
existence of significant deviations from adiabaticity in the lower-
most ∼200 km of the outer core (Souriau & Poupinet 1991). This
layer, sometimes called F-layer for historical reasons, exhibits an
anomalously low VP gradient which is most probably indicative of
stable compositional stratification (Gubbins et al. 2008), implying
that the lowermost 200 km of the outer core are depleted in light
elements compared to the bulk of the core. This is in stark contrast
with the classical model of outer core convection sketched above:
in place of the expected thin unstable boundary layer, seismological
models argues for a very thick and stable layer. Note also that the
thickness of the layer, ∼200 km, is much larger than any diffusion
length scales, even on a Gy timescale, which means that if real this
layer must have been created, and be sustained, by a mechanism
involving advective transport.

Because light elements are partitioned preferentially into the liq-
uid during solidification, iron-rich melt can be produced through a
two-stage purification process involving solidification followed by
melting (Gubbins et al. 2008). Based on this idea, Gubbins et al.
(2008) have proposed a model for the formation of the F-layer in
which iron-rich crystals nucleate at the top of the layer and melt back
as they sink towards the ICB, thus implying a net inward transport of
iron which results in a stable stratification. In contrast, Alboussière
et al. (2010) proposed that melting occurs directly at the ICB in
response to inner core internal dynamics, in spite of the fact that the
inner core must be crystallizing on average. Assuming that the inner
core is melting in some regions while it is crystallizing in others, the
conceptual model proposed by Alboussière et al. (2010) works as
follow: melting inner core material produces a dense iron-rich liquid
which spreads at the surface of the inner core, while crystallization
produces a buoyant liquid which mixes with and carries along part
of the dense melt as it rises. The stratified layer results from a
dynamic equilibrium between production of iron-rich melt and en-
trainment and mixing associated with the release of buoyant liquid.
Analogue fluid dynamics experiments demonstrate the viability of
the mechanism, and show that a stratified layer indeed develops
if the buoyancy flux associated with the dense melt is larger (in
magnitude) than a critical fraction (≃80 per cent) of the buoyancy
flux associated with the light liquid. This number is not definitive
because possibly important factors were absent in Alboussière et al.
(2010)’s experiments (Coriolis and Lorentz force, entrainment by
thermal convection from above, . . . ) but it seems likely that a high
rate of melt production will still be required.

A plausible way to melt the inner core is to sustain dynamically a
topography that will bring locally the ICB at a potential temperature
lower than that of the adjacent liquid core, which allows heat to
flow from the outer core to the inner core. The melting rate is then
limited by the ability of outer core convection to provide the latent
heat absorbed by melting, and only a significant ICB topography
can lead to a non-negligible melting rate. More recently, Gubbins
et al. (2011) and Sreenivasan & Gubbins (2011) have proposed that
localized melting of the inner core might be induced by outer core
convection, but the predicted rate of melt production is too small to
produce a stratified layer according to Alboussière et al. (2010)’s
experiments. Furthermore, it is not clear that the behaviour observed
in numerical simulations at slightly supercritical conditions would
persist at Earth’s core conditions.

Among the different models of inner core dynamics proposed
so far (Jeanloz & Wenk 1988; Yoshida et al. 1996; Karato 1999;
Buffett & Wenk 2001; Deguen et al. 2011), only thermal convec-

Figure 1. A schematic representation of the translation mode of the inner
core, with the grey shading showing the potential temperature distribution
(or equivalently the density perturbation) in a cross-section including the
translation direction (adapted from Alboussière et al. 2010).

tion (Jeanloz & Wenk 1988; Weber & Machetel 1992; Buffett 2009;
Deguen & Cardin 2011; Cottaar & Buffett 2012) is potentially able
to produce a large dynamic topography and associated melting.
Thermal convection in the inner core is possible if the growth rate
of the inner core is large enough and its thermal conductivity low
enough (Sumita et al. 1995; Buffett 2009; Deguen & Cardin 2011).
One possible mode of inner core thermal convection consists in a
global translation with solidification on one hemisphere and melt-
ing on the other (Monnereau et al. 2010; Alboussière et al. 2010;
Mizzon & Monnereau 2013). The translation rate can be such that
the rate of melt production is high enough to explain the forma-
tion of the F-layer (Alboussière et al. 2010). In addition, inner core
translation provides a promising basis for understanding the hemi-
spherical dichotomy of the inner core observed in its seismological
properties (Tanaka & Hamaguchi 1997; Niu & Wen 2001; Irving
et al. 2009; Tanaka 2012). Textural change of the iron aggregate
during the translation (Bergman et al. 2010; Monnereau et al. 2010;
Geballe et al. 2013) may explain the hemispherical structure of the
inner core. Inner core translation, by imposing a highly asymmetric
buoyancy flux at the base of the outer core, is also a promising
candidate (Aubert 2013; Davies et al. 2013) for explaining the exis-
tence of the planetary scale eccentric gyre which has been inferred
from quasi-geostrophic core flow inversions (Pais et al. 2008; Gillet
et al. 2009).

However, inner core translation induces horizontal temperature
gradients (see Fig. 1), and Alboussière et al. (2010) noted that finite
deformation associated with these density gradients is expected
to weaken the translation mode if the inner core viscosity is too
small. They estimated from an order of magnitude analysis that the
threshold would be at η ∼ 1018 Pa s. Below this threshold, thermal
convection is expected to take a more classical form, with cold
plumes falling down from the ICB and warmer upwellings (Deguen
& Cardin 2011). Published estimates of inner core viscosity range
from ∼1011 to ∼1022 Pa s (Yoshida et al. 1996; Buffett 1997; Van
Orman 2004; Koot & Dumberry 2011; Reaman et al. 2011, 2012)
implying that both convection regime seem possible.

The purpose of this paper is twofold: (i) to precise under what con-
ditions the translation mode can be active, and (ii) to estimate the rate
of melt production associated with convection, in particular when
the effect of finite viscosity becomes important. To this aim, we de-
velop a set of equations for thermal convection in the inner core with
phase change associated with a dynamically sustained topography at
the inner core boundary (Section 3). The kinetics of phase change is
described by a non-dimensional number, noted P for ‘phase change
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Figure: Deguen, 2013
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3. The mantel convection
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v

Boundary conditions

Inner Core

Outer core

T

n

Usual boundary condition :

[[�n]] = 0

Notation : [[�n]] := �+n � ��n

Spherical geometry :

�+
rr = ��

rr �+
r✓ = ��

r✓ �+
r� = ��

r�.

I will show that, at a permeable
interface, like a phase change :

[[�n]] = 2�
R

n � rT �.
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A simple model to highlight the problem

II. Highlight the problem :
a very simple flow-model (spherical)
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A simple model to highlight the problem

x

R

R+dR

v r= v(r)
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Stokes Equation, viscous linear
quasi-static fluid :

r · (⇢v) = 0,

r · � = 0,

� = �pI+⌘
⇣
rv + (rv)T

⌘
+� (r·v)I .

Radial symetry :

v = v(r)r ,

⇢ = ⇢(r).

Not essential but simplifies the
proof : ⌘ = constant.
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A simple model to highlight the problem

r · (⇢v) = 0,

r · � = 0,

� = �pI+⌘
⇣
rv + (rv)T

⌘
+� (r·v)I .

@r (⇢vr
2) = 0

@r�rr +
1
r
(2�rr � �✓✓ � ���) = 0

�rr = �p + 2⌘@rv + �@r (r
2v)/r2

�✓✓ = ��� = �p+2⌘v/r+�@r (r
2v)/r2

@r�rr + 4⌘@r

⇣v
r

⌘
= 0.

Solution :

v =
Cst

⇢r2

�rr + 4⌘
v
r
= Cst

0.

If ⇢ ! discontinuous :

[[⇢v ]] = 0

[[�rr ]] = �4⌘
R

[[v ]]

Young-Laplace law :

[[�rr ]] =
2�
R

.

but with
� = �2⌘ [[v ]] = �2⌘⇢v [[1/⇢]] .

The surface tension � depends on the flow.
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The reason why

We try to understand why
Think of a thin balloon or a soap bubble

rr

R

R+dR

σθθ

σ

�rr = �p + 2⌘ @rv + �@r (r
2v)/r2

�✓✓ = ��� = �p+2⌘v/r+�@r (r
2v)/r2

Tectonics, deviatoric stress : push in

one direction $ pull perpendicular

�✓✓ = �rr � 2⌘ (@rvr � vr/r) .

=) �✓✓ ! 1.

on the boundary.

Surface tension !
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New interface conditions

III. A method to investigate boundary conditions :
discontinuous functions (distributions)
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New interface conditions

−

+

z=−1 z=0 z=1

1− 1+

[[v]]

z

v

v

v

Velocity written in a discontinuous
form :

v = v� � + v+ +,

i.e.
[[v ]] = v+ � v�.

Then :

r ± = ± n �, r� = n �0.

and then

rv = (rv)� �+(rv)+ ++[[v ]]⌦n�.
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New interface conditions

General result, curved interface, discontinuous viscosity :

[[⇢v · n]] = 0 [[�n]] = 2�
R

n � rT �

with :

� = �2 [[⌫]] ⇢v · n surface tension

2
R

= rT · n = total surface curvature

⌫ =

Z
⌘@z (1/⇢) dz the surface intrinsic property

On a plane interface with a continuous viscosity :

[[⇢vz ]] = 0 [[�zz ]] = 0
[[vx ]] = 0 [[�xz ]] = @x

�
2⌘ [[vz ]]

�
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Numerical test
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Figure: Velocities for the solutions as function of x and z. Left panels : numerical solution for a diffuse
interface. Middle : numerical solution for a sharp interface by using the ’classical’ jump conditions
(continuous traction). Right : numerical solution for a sharp interface by using the ’classical’ jump
conditions (continuous traction).
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Conclusions and prospect

Conclusion : when there is a mass transfert across a density jump interface,
then the traction is not continuous. There is a ’dynamic’ surface tension.

Prospect

Inner-core convection

Mantle convection (410 and 660 km phase changes)

Rayleigh-Benard and Rayleigh-Taylor convection with phase change

More generally fluid dynamics with phase change

Slichter mode ?

P-SV conversion ?

(spherical) Shock waves ?

Energy, temperature, entropy jumps ?

Mesure of the surface tension ?
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1. Introduction

Jump conditions to be applied across an interface
within a viscous fluid have been explored for several
decades (Anderson et al., 1998, 2007; Aris, 1962; Delhaye,
1974; Dziubek, 2011; Ishii and Hibiki, 2011; Joseph and
Renardy, 1993; Slattery et al., 2007). A general form of the
traction jump (the traction is sn where s is the stress
tensor and n a unit vector normal to the interface) involves
a flux of momentum across the interface, a possibly
anisotropic surface tension and terms including an inter-
face mass density. In pratice, the interface is often
supposed to have no mass and the traction is known to

undergo a jump especially in two cases: in a shock wave,
where the flux of momentum across the interface equals
the jump of pressure; and in the presence of surface
tension defined as a capillary action due to intermolecular
forces at the interface between two immiscible fluids.

Here, we put aside the shock wave and the intrinsic
surface tension contributions. In this case, the traction
vector is usually supposed to be continuous, for example
across phase changes (Hutter and Johnk, 2004). On the
contrary, in this paper we show: first, that when a viscous
fluid with low Reynolds number crosses an interface with a
density jump the traction undergoes a jump; second that
this jump takes the mathematical form of an isotropic
surface tension that we obtain as a function of the fluid
parameters.

The question of a discontinuous traction was first
addressed in the context of solid Earth geophysics (Corrieu

C. R. Geoscience 346 (2014) 110–118
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A B S T R A C T

We consider a fluid crossing a zone of rapid density change, so thin that it can be
considered as a density jump interface. In this case, the normal velocity undergoes a jump.
For a Newtonian viscous fluid with low Reynolds number (creeping flow) that keeps its
rheological properties within the interface, we show that this implies that the traction
cannot be continuous across the density jump because the tangential stress is singular. The
appropriate jump conditions are established by using the calculus of distributions, taking
into account the curvature of the interface as well as the density and viscosity changes.
Independently of any intrinsic surface tension, a dynamic surface tension appears and
turns out to be proportional to the mass transfer across the interface and to a coefficient
related to the variations of density and viscosity within the interface. Explicit solutions are
exhibited to illustrate the importance of these new jump conditions. The example of the
Earth’s inner core crystallisation is questioned.
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