# Physics Background

• Cours (CM) -
• Cours intégrés (CI) 42h
• Travaux dirigés (TD) -
• Travaux pratiques (TP) -
• Travail étudiant (TE) -

Langue de l'enseignement : Anglais

## Description du contenu de l'enseignement

1. Units-vectorsWe present the units of space, length, surface, volume, time, temperature, mass…. Conversions of units. Coordinates of vectors, norms, manipulation of vectors (sum, difference), drawing vectors in a cartesian plane.

2. KinematicsAverage velocity and average acceleration. Instantaneous velocity and acceleration in cartesian coordinates. Presentation of polar basis, relation between time-derivative of radial and othoradial vectors, derivation of velocity and acceleration.

3. Dynamics Newton laws. Static equlibrium. Free Fall. Inclined plane. Pendulum. (the projection of vectors onto axis using Newton laws and obtention of motion equations)

4. Energy. Harmonic Oscillator Kinetic, Potential and Total energy. Presentation of cosine and sine functions an its parameters (amplitude, frequency, phase). Obtention of second order equation in oscillator systems : spring and pendulum (small oscillations). Conservation of energy and exchange of energy between kinetic and potential energies.

## Compétences à acquérir

1. Discovering the basic vocabulary in English related to the topics listed below.
2. Mastering the notion of vectors and their manipulations : projection, sum, norm calculation.
3. Knowing the cartesian and polar coordinates systems leading to the calculation of velocity and acceleration of a material point.
4. Mastering the motion equations in the free fall problem and being able to use them to make predictions about the mobile trajectory.
5. Understanding the concept of harmonic oscillator in mechanics: obtaining the motion equation, knowing the mathematical solution and understanding the influence played by the system parameters on the oscillator period.

Robin Merine