Accepted Manuscript

Experimental generation of volcanic pseudotachylites: constraining rheology

Yan Lavallée, Thomas M. Mitchell, Michael J. Heap, Jérémie Vasseur, Kai-Uwe Hess, Takehiro Hirose, Donald B. Dingwell

PII: S0191-8141(12)00036-3
DOI: 10.1016/j.jsg.2012.02.001
Reference: SG 2717

To appear in: Journal of Structural Geology

Received Date: 23 May 2011
Revised Date: 30 January 2012
Accepted Date: 1 February 2012

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Experimental generation of volcanic pseudotachylites: constraining rheology

Yan Lavallée†, Thomas M. Mitchell2, Michael J. Heap3, Jérémie Vasseur1, Kai-Uwe Hess1, Takehiro Hirose4, Donald B. Dingwell1

1Earth and Environment, Ludwig-Maximilians University – LMU-Munich, Theresienstrasse 41/III, 80333 Munich, Germany
2Experimental Geophysics Laboratory, Institute for Geology, Mineralogy, and Geophysics, Ruhr-University, 44780 Bochum, Germany
3Laboratoire de Géophysique Expérimentale, Institut de Physique de Globe de Strasbourg (UMR 7516 CNRS, Université de Strasbourg/EOST), 5 rue René Descartes, 67084 Strasbourg cedex, France
4Kochi Institute for Core Sample Research (KCC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 200 Monobe-otsu, Kochi, Nankoku 783-8502, Japan

†Corresponding author
Abstract

Volcanic systems are highly dynamic environments that comprise rocks and magmas, which, in the process of strain localisation (e.g., in catastrophic flank collapse or dome-building events), are candidate materials for the occurrence of frictional melting and the formation of pseudotachylytes. We evaluate the frictional behaviour of a plagioclase-, two-pyroxene- and glass-bearing andesite and introduce an approach to constrain the rheology of frictional melts. Frictional slip at a rate of 1.3 m/s under an axial stress of 1.5 MPa induces heating at a rate approximating 130 °C per meter of slip and frictional melting of the andesite occurs at >1000 °C, which corresponds to a peak in shear stress. With continuing displacement, the shear stress decreases by ~25% from the peak strength and stabilises while the temperature equilibrates to 1230-1290 °C. The shear stress for the system is congruent with a non-Arrhenian temperature-dependent frictional melt rheology exhibiting a non-Newtonian viscosity evolving from approximately $10^{4.2}$ to $10^{3.4}$ Pa·s. Post-experiment analysis show a gradation from 1) the host rock, to 2) an extraordinary zone of unmelted, yet viscously-deformed material, to 3) a thin, outer region of chemically heterogeneous protomelts, and to 4) an inner region of chemically homogeneous frictionally generated/modified melt in the core of the slip zone. We discuss the role and identification of frictional melting in volcanic systems and the implication of viscous remobilisation of magmatic plugs during frictional slip of glass-bearing volcanic materials.

1. Introduction

In recent years, frictional melts generated in localised slip zones in faults have been shown to exert control on coseismic faulting and earthquake slip (Spray, 1987,
Hirose and Shimamoto, 2005, Di Toro et al., 2006b, Di Toro et al., 2011). During earthquakes where fault slip is localized to narrow slipping zones (at ca. >0.1 m/s), most frictional work is converted to heat; for instance, more than 1400 °C can be generated during seismic slip events along slip zones thinner than 10 mm if the shear strength remains constant (e.g., Rice, 2006). Such temperature increases are sufficient to melt the wallrocks along the slip zone, producing frictional melts which cool to form a pseudotachylyte (Sibson, 1975), which is often used to infer seismic fault motion on exhumed faults (Cowan, 1999).

Melting of rocks under such rapid-heating events is perceived to be a non-equilibrium thermodynamic process (Spray, 1992) in which selective melting of individual crystal phases depend on their fusion temperatures (Lin and Shimamoto, 1998). Sustainability of slip and friction (along a discrete slip plane) regulate melting and the retreat of the rock-melt interface along seismogenic faults – a thermodynamic phenomenon described as a Stefan problem (Hirose and Shimamoto, 2005). As melting ensues, the chemical composition of the melt evolves, which is an additional factor controlling the shear resistance of faults coated by frictional melts (Hirose and Shimamoto, 2005). The shear resistance of the viscous layer is determined by the viscosity and shear strain rate of the molten layer, previously approximated as a Newtonian liquid with Arrhenian temperature dependence of viscosity (e.g., Spray, 1993, Ujiie et al., 2007, Piccardo et al., 2010). Frictional melts may act as lubricants to seismic motion as strong velocity-weakening of faults occurs during melt generation, which has a significant effect on the frictional properties in slip zones (Di Toro et al., 2006a). When a molten layer separates a fault during seismic slip, it is no longer rock-to-rock friction but viscous energy dissipation that becomes the heat source. During deceleration and cessation of slip, the heat generated by friction
dissipates into the surrounding country rocks and the melt succumbs to one of two fates: 1) crystallization or 2) quenching to a glass, both preserved henceforth, in the geologic record, as pseudotachylytes. But dynamically, how do frictional melts evolve? And equally important, what are the rheological consequences of chemically evolving frictional melts on the frictional properties of slip zones?

geochemical compositions (Hui and Zhang, 2007, Giordano et al., 2008). The onset of non-Newtonian rheology in melts is also well-documented empirically (Li and Uhlmann, 1968, 1970, Simmons et al., 1982, Simmons et al., 1988, Dingwell and Webb, 1989, 1990, Brückner and Yue, 1994, Simmons, 1998) and found to correlate with strain rates approaching the relaxation rate of the liquid structure (to within 3 orders of magnitude; e.g., Webb and Dingwell, 1990). In the case of partially molten rocks, such as those produced by frictional slip, the presence of crystals and bubbles may also affect the rheological properties both by influencing the Newtonian (static) suspension viscosity and by the addition of strain-rate dependence (Bagdassarov and Dingwell, 1992, Stein and Spera, 1992, Bagdassarov et al., 1994, Lejeune and Richet, 1995, Stevenson et al., 1996, Lejeune et al., 1999, Stein and Spera, 2002, Caricchi et al., 2007, Lavallée et al., 2007, Cordonnier et al., 2009). Frictional melting thus results in the generation of a complex, disequilibrium multiphase magma with the result that its rheological properties are almost unknown. The frictional properties of faults which produce complex frictional melts are thus intimately linked to the chemical and physical evolution of the melt.

To date, frictional melting experiments have been conducted primarily on intrusive, metamorphic and sedimentary rocks (Spray, 1987, 1988, Kennedy and Spray, 1992, Shimamoto and Lin, 1994, Spray, 1995, Tsutsumi and Shimamoto, 1997, Hirose and Shimamoto, 2005, Di Toro et al., 2006a, Di Toro et al., 2006b, Tsutsumi and Mizoguchi, 2007, Del Gaudio et al., 2009, Sato et al., 2009, Ujiie et al., 2009, Kim et al., 2010, Niemeijer et al., 2011). The majority of these studies focus on the control of frictional melts on coseismic earthquake dynamics of seismogenic crustal-scale faults, which commonly initiate near the brittle-ductile transition at some ca. 10-km depth. Volcanic regions, however, with their ambient temperatures above
that of the typical crustal geotherm (for a given depth) as well as their perpetually deforming nature stand as ideal candidates for frictional melting and formation of pseudotachylytes. Yet, the potential for frictional melting in this geological setting as well as the frictional properties of volcanic rocks has been, to date, unexplored.

Volcanic systems are dynamic environments, which are highly seismogenic. Magma ascent and eruptions are accompanied by complex seismic signal trigger mechanisms ranging from failure of conduit wallrocks and magma, to frictional slip and degassing (e.g., Sparks, 2003). In recent years, magma has been increasingly recognised as a seismic source triggered by strain localisation, leading to fracturing and subsequent slip (e.g., Iverson et al., 2006, Neuberg et al., 2006, Johnson et al., 2008, Lavallée et al., 2008, Tuffen et al., 2008). The role and extent of friction-controlled ascent in conduits has been quantified with regard to viscous flow (e.g., Melnik and Sparks, 1999, Costa et al., 2007, Melnik et al., 2009), stick-slip behaviour (e.g., Tuffen et al., 2003, Neuberg et al., 2006, Melnik et al., 2009), cataclastic flows of gouge material (e.g., Cashman et al., 2008, Kennedy et al., 2009, Kennedy and Russell, 2011), ejections of pyroclasts during explosive eruptions (e.g., Wilson et al., 1980, Ramos, 1995, Bower and Woods, 1996), and recently with regard to frictional melting (e.g., Kendrick et al., this issue). In fact, to our knowledge, only five studies exist evaluating pseudotachylytes in volcanic systems: including the aforementioned study of frictional melting in volcanic conduit, complementary studies have also alluded to the occurrence of frictional melting in a sector collapse (Legros et al., 2000), in pyroclastic/block-and-ash flows (Grunewald et al., 2000, Schwarzkopf et al., 2001) and in caldera subsidence-controlling faults (Kokelaar, 2007).

Volcanic rocks (in contrast to intrusive, sedimentary and metamorphic rocks) present an additional complexity in that their groundmass commonly comprises an
initial fraction of interstitial glass. Glass does not form via a phase transition in the Gibbsian thermodynamic sense, rather, liquid and glassy melts are two physical states of the same phase, discriminated by strain rate and temperature (Dingwell and Webb, 1989). The ability of silicate melts in magmas, to switch from a liquid to a glassy state (and back) is well described by a Maxwell body viscoelasticity with a transition known as T_g, the glass transition (Webb and Dingwell, 1990). T_g is a kinetic barrier, dependent predominantly on chemical composition and temperature; it typically occurs at a temperature hundreds of degrees below the melting point in simple congruently melting systems and often well below the range of crystallisation in magmas. Volcanic rocks preserving the glassy groundmass phase may thus be remobilised to viscous liquids at temperatures well below their melting temperatures or those of their constituent phases. Thus the remobilisation of pseudotachylyte in volcanic systems forms a special material case with potentially surprising characteristics. Understanding the frictional properties of volcanic rocks subject to selective melting and formation of volcanic pseudotachylyte may greatly improve our ability to predict the flow and strain localisation observed in volcanic domes and inferred for volcanic conduits. As such flow models are an essential ingredient of reliable interpretation of volcano monitoring signals, the mitigation of volcanic eruptions stands to gain from a better understanding of the role of frictional melting and pseudotachylyte development in volcanic environments. Here, we introduce a method which combines frictional, geochemical and rheological data to constrain the rheology of frictional melts and present results from a high-velocity rotary experiment on a glass-bearing andesitic rock to evaluate the role and generation of pseudotachylyte in volcanic environments.
2. Methodology

2.1. Experimental procedure

This study targets subduction-related, volcanic arc environments and most specifically, a glassy volcanic rock to evaluate the influence of glass on the mechanical response of rocks during slip in comparison with the exclusively crystalline lithologies investigated to date (e.g., Hirose and Shimamoto, 2005, Di Toro et al., 2006b, Del Gaudio et al., 2009). To this end, a fresh andesite rock erupted in 2004 at Volcán de Colima (Mexico) was chosen, as it is an intermediate volcanic rock, typical of stratovolcanoes and dome-building eruptions. The andesite sample used in this study optically contains about 80% crystals (40 vol.% phenocrysts and 40 vol.% microlites) and 20 vol.% interstitial glass (and 8 vol.% porosity, based on He-pycnometry). The assemblage comprises 60 vol.% plagioclase, 14 vol.% orthopyroxene, 10 vol.% clinopyroxene, 5 vol.% titanomagnetite, and occasional crystals of hornblende and olivine (See also Reubi and Blundy, 2008, Savov et al., 2008). This andesite is anhydrous and was erupted as a volatile-poor lava (Reubi and Blundy, 2008), which simplifies the description of the melting process as well as the evolution of the viscosity (c.f., Hess and Dingwell, 1996).

Frictional melting was experimentally investigated using a high-velocity rotary apparatus at the Kochi Core Center in Japan (Fig. 1, see Hirose and Shimamoto, 2005, for details of the technique). To this end, we prepared plane-parallel cylindrical samples (with a diameter of 24.94 mm and a length of 20 mm), one of which is held stationary and has axis-parallel drill holes to permit the insertion of four K-type thermocouples (1.1, 1.3, 3 and 5 mm away from the slip zone; see Fig. 1b), and the other which is placed in the rotary side of the loading column. The sample pair was placed at position 1 in the apparatus (see Fig. 1) and an axial stress of...
1.5 MPa (equivalent to a depth of ~65 m) was applied from the stationary side by means of an air actuator. The experiment was conducted at slip velocity of 1.3 m/s until the shear stress attains nearly steady-state value, so as to ensure the quasi-isothermal state of the partial melt and thus allow the quantification of the end products.

2.2. Temperature correction

In the case of rapid heating which accompanies high-velocity friction, the temperature monitored in the host rock only provides an approximation of the actual temperature at the slip interface; in fact, the thermocouple reads the temperature dissipated through time. It thus result that each read temperature increments were experienced at the slip interface at an earlier time. We assume a semi-infinite 1D medium undergoing thermal conduction without dissipation, following the heat equation (e.g., Nielsen et al., 2008):

\[
\frac{\partial^2 T}{\partial x^2} = \frac{1}{\kappa} \frac{\partial T}{\partial t} \quad \text{with:} \quad \begin{cases} T(x, t = 0) = T_0 \\ T(x = 0, t) = T_c \end{cases}
\]

which includes a uniform initial temperature \(T_0 \) of the medium and upon slip and heating, imposes a temperature \(T \) at the interface (using a Dirichlet boundary condition which averages the imposed fix temperature at each time interval). \(\kappa \) is the thermal diffusivity of andesite approximated as \(5.3 \times 10^{-7} \) m²/s (Labaš et al., 2006) and \(T_c \) is the temperature measured by the thermocouple at a distance monitored during the experiment. We apply a change of variable \(\bar{T} = T - T_0 \) to equation 1 in order to extract the temperature at a position \(x \), thus obtaining:

\[
\frac{\partial^2 \bar{T}}{\partial x^2} = \frac{1}{\kappa} \frac{\partial \bar{T}}{\partial t} \Leftrightarrow \frac{\partial^2 \bar{T}}{\partial x^2} - \frac{1}{\kappa} \frac{\partial \bar{T}}{\partial t} = 0 \quad \text{with:} \quad \begin{cases} \bar{T}(x, t = 0) = 0 \\ \bar{T}(x = 0, t) = T_c - T_0 \end{cases}
\]
This heat equation can be solved using the following Laplace transform:

\[
\theta(x, p) = L\{T(t)\} = \int_0^\infty \exp(-pt)\tilde{T}(x,t)\,dt
\]

(3)

which, once applied, provides us with

\[
\frac{d^2\theta}{dx^2} - \frac{1}{\kappa} (p\theta - \tilde{T}(x, t = 0)) = 0 \iff \frac{d^2\theta}{dx^2} - q^2\theta = 0
\]

with: \(q^2 = \frac{p}{\kappa} \)

(3)

offering a mathematical solution of the type \(\theta(x, p) = -(A\exp(-qx) + B\exp(qx)) \). The temperature keeps a finite value when \(x \) goes towards infinity, so that \(B = 0 \) and

\[
\theta(x, p) = -A\exp(-qx) \quad \text{with} \quad \theta(x = 0, p) = A = \frac{T_c - T_0}{p}.
\]

Finally the use of Laplace inverse transform leads to:

\[
T(x, t) - T_0 = \theta(x, p) = -(T_c - T_0)\exp(-qx/p) = -(T_c - T_0)\operatorname{erf}\left(\frac{x}{2\sqrt{\kappa t}}\right)
\]

(4)

and therefore

\[
T(x, t) = T_0 - (T_c - T_0)\operatorname{erf}\left(\frac{x}{2\sqrt{\kappa t}}\right)
\]

(5)

which is used to approximate the temperature along the slip interface. This estimation, although simplistic in its discretisation of time and temperature intervals, appears to satisfactorily approximate the evolution of temperature during slip, since the modelled temperatures initially diverge from the thermocouple read out (while heating takes place faster than what is recorded), then converge as the sample shortens and the thermocouple approaches and intrudes the melt zone (henceforth providing an \textit{in-situ} measurement of the melt temperature). The thermal constraint has obvious implication for the mechanics experienced at the slip zone. Yet, a more accurate three-dimensional derivation of the temperature evolution via the forward iteration of
an analytical solution to Fourier’s law of conduction applied to a cylinder is beyond the scope of this study and will require attention in future studies in order to fully integrate rheological constraints to the mechanics of slip in the presence of frictional melts.

2.3. Structural, physical and chemical imaging

Structural description of the slip zone was performed using backscattered electron images, taken with a CAMECA SX100 electron probe micro analyser (EPMA) equipped with wavelength dispersive spectrometers as well as backscattered electron imaging (BSE) capability at the LMU-Munich. Image intensities – that is, variations in grey scales as a result of molecular densities of each phase – were taken at 15kV and allowed us to distinguish between melt batches as well as to identify the distribution and shape of partially molten crystal fragments. Calibration of the intensity spectrum of each phase was achieved by electron microprobe analysis (see section 2.4). The shape and fraction of phases were estimated using the intensity spectrum in the 0-255 grey scale, as an input parameter in the free, online image analysis toolbox JMicroVision 1.2.7 (Roduit, 2006).

3-D high-resolution images were acquired via a v/tome/x s 240 micro-CT scanner from General Electric (Phoenix) using a high-power X-ray tube and a drx-250 rt detector system. The scans were acquired at a voltage of 120 kV and a current of 167 nA for an exposure time of 1 s, cumulating 2000 images for 360° (Vsensor 2 mode), which provided a Pixel/Voxel size resolution of 14.78 μm.

2.4. Geochemical analysis
The geochemical composition of the frictional melt was measured for major and minor elements using the same EPMA. The measurements were performed on glass (i.e., the frictional ‘melt’) with a 10 μm defocused beam set at 10 nA (Table 1).

2.5. Thermal analysis

The heat capacity of the frictional melt was determined in a Netzsch DSC-404C differential scanning calorimeter (DSC). Here, ~20 mg of glass fragments, prepared from the frictional melt expelled, were heated in the DSC at a rate of 10 °C/min until crossing of T_g, which is evidenced by a peak in heat capacity. The material was subsequently cooled and reheated, both under the same rate of 10 °C/min, to established the actual T_g of the liquid, which for such a known rate is equivalent to ~10^{11} Pa·s (e.g., Gottsmann et al., 2002) and serve to constrain the accuracy of temperature-dependence of viscosity (modelled in section 2.6).

2.6. Frictional melt viscosity

The viscosity of the multiphase melt present in the slip zone was modelled in five steps:

1. The non-Arrhenian temperature-dependence of the viscosity of the frictional melt was estimated using the measured chemical composition as an input parameter in the most up-to-date, web-based GRD viscosity calculator (available online at http://www.eos.ubc.ca/~krussell/VISCOSITY/grdViscosity.html), which is modelled on a Vogel-Fulcher-Tamman equation:

\[\eta = A + \frac{B}{C + T} \]

where the relationship between viscosity (\(\eta \) in Pa·s) and temperature (T in Kelvin) is dependent on the A, B, and C, which are parameters modelled using 1770 viscosity
measurements on a wide range of geochemical compositions (Giordano et al., 2008). In the estimates presented in this study, zero water and fluorine contents are assumed, based on the absence of hydrous phases and on the conclusion from Reubi and Blundy (2008) and Savov et al. (2008) that this andesite was dry upon eruption.

(2) The viscosity-temperature relationship was compared to the calorimetric estimation of the viscosity at the T_g interval in order to validate the use of the GRD viscosity calculator and see whether the frictional melt is chemically homogenized and evidence only one T_g peak or is not chemically mixed and evidence multiple T_g peaks.

(3) The rheological effects added by the presence of crystals were estimated, using the empirical/analytical, relative-viscosity calculator of Costa and others (Costa et al., 2009; available online at http://datasim.ov.ingv.it/~costa/#Articles):

$$
\eta_r(\phi) = \frac{1 + (\phi)\delta}{\left[1 - F\left(\frac{\phi}{\phi_*}, \xi, \gamma \right)\right]B\phi_*}
$$

$$
F = (1 - \xi)erf\left[\frac{\sqrt{\pi} \phi}{2(1 - \xi) \phi_*} \left(1 + \frac{\phi}{\phi_*}\right)\right]
$$

where $\eta_r(\phi)$ is the relative viscosity increase due to the crystal fraction (ϕ) which is estimate at 0.3 in the experiment (see Cimarelli et al., 2011, for the rectified formulation of the equations). As input parameter, we used 0.56 as a critical solid fraction (ϕ_*) for the nearly equant and equigranular crystal population developed in the frictional melt, 2.5 for the Einstein coefficient (B) and ξ and γ, are empirical geometrical relationship with strain rate, which were solved by Carrichi et al. (2007) and are included in the relative-viscosity calculator by Costa et al. (2009).
(4) The strain rate ($\dot{\varepsilon}$) of the melt within the slip zone was estimated by using the rate of rotation (ν), perimeter of the circular trajectory at a given radius ($0 < r < 12.48$ mm) in the sample interface (averaged to 6.24 mm for the purpose of the calculation) and the thickness of the slip zone (d, equivalent to zone 3 & 4), which after cooling (and after some compression by the apparatus) vary from 0.4 in the middle to 0.6 near this outer margin (Fig. 3e), which provide a minimum estimate averaged at $d \approx 0.5$ mm:

$$\dot{\varepsilon} = \frac{2\pi}{\nu d}$$

(9)

In this analysis, the melt is assumed not to slip along the rock boundary, which concurs with the irregular geometry of crystal fragments at the slip surface.

(5) The evolution of viscosity during slip is finally modelled as a function of the corrected temperature (modelled on the basis of the recorded temperature profile). This estimation is provided to a first order without considering rheological complexities undergone as crystals, melt and protomelts (i.e., initial selective melt chemically reflecting the local crystal assemblage) chemically homogenize, since the timescale for assimilation and mixing are not included here and will be the subject of a future study. Following this overlapping of empirical models used in our viscosity calculation, we estimate the accuracy of the modelled values to +/-0.2 logarithmic units of viscosity.

3. Mechanics, dynamics and microstructure of high-velocity frictional melts

High-velocity friction experiments of the andesitic rock were characterized by an abrupt increase in shear stress, followed by a minor decrease in the first metre of slip (Fig. 2 inset). With increasing slip, the shear stress gradually increases while the temperature rapidly increased on the order of ~ 100 °C per meter of slip (modelled to ~ 130 °C/m), and a growth of glowing patches on the slip plane is seen after ~ 8 m of...
slip (Fig. 2). This strengthening is due to the melt patches growing into a thin continuous layer which extends across the entire slip zone after 12 m of displacement, corresponding with the second friction peak. From this point on, a second weakening phase began, which is due to a growth of the molten layer resulting in the reduction in the shear stress (Hirose and Shimamoto, 2005). This phase of frictional melting was accompanied by continuous axial shortening of the sample at a rate of 0.43 mm/s in addition to a continued rise in temperature (recorded for as long as the thermocouple did not break due to sample shortening) and expulsion of the pervasive melt (Fig. 3a).

Optical analysis of the slip zone under the microscope, showed a gradation from (Fig. 3b): (#1) intact host rock 2.5 mm from the edge of the slip zone (Fig. 3c) to (#2) a thin zone of increased crystal mobility between 2.5 and 0.4 mm (Fig. 3d), (#3) a thin sheared zone of partially molten rocks between 0.4 and 0.3 mm, and (#4) a ~0.2- to 0.4- mm thick zone of melt containing resorbed, equant crystal fragments primarily of plagioclase with some pyroxenes as well as spherical opaque droplets and micro-bubbles (Fig. 3e, 4).

BSE and X-ray CT imaging provide a clear view of the physical and chemical heterogeneities developed in the slip zone. All four zones described above were identified. Furthermore, the slip zone hosts cracks, which crosscut all four zones (Fig. 4a). X-ray computed tomographic imaging reveals 3-dimensional details of the slip zone (Fig. 5). Zone #3 shows that frictional melting mainly initiated in the outer part of the sample, whereas the core retained coarser, unmelted crystals. Slip also developed ring structures, with variable bubble concentrations (Fig. 5b). The crosscutting cracks observed under BSE are also visible under X-ray. These cracks are best developed in zone #4, showing a network of radial and concentric cracks in the frictional melt, suggesting propagation of the crack caused by contraction during
cooling (a phenomenon not necessarily taking place in nature owing to slow cooling of large body masses).

The onset of selective melting preserved in the outer margin of zone #3 revealed batches of protomelts with different chemical compositions (Table 1). One melt pocket had the composition of a single crystal whereas others have the composition of different ratios of plagioclase to pyroxene (e.g., Glass #10, #11, #54 and #55; Table 1). In our search for different protomelts, we did not find pure pyroxene melt pockets. The protomelts are intertwined in a chaotic manner and blend where they pinch into one another (Fig 4b); they show varying degrees of mixing. In the slip zone #4 and in the expelled melt, the BSE images reveal the presence of a chemically homogeneous frictional melt phase hosting droplets of iron oxides and a suspension of plagioclase and pyroxene fragments. The frictional melt zone essentially is chemically equivalent to that of the bulk rock analysis (Table 1).

The intensity spectrum of each phase was determined on five BSE images taken in zone #4 (Fig 4c), using the grey scale range 82-94 for the frictional phase, 126-255 for the iron oxides droplets, 40-81 for the plagioclase, 95-125 for the pyroxene and 0-39 for bubbles as input parameter in JMicroVision. This grey scale bracketing identified 3688 entities (n) and constrained 27 vol.% plagioclase (n = 1822), 3 vol.% pyroxene (n = 2), 9 vol.% iron oxides droplets (n = 1217) and 1 vol.% bubbles (n = 364), leaving an additional 60 vol.% of frictional melt. This was complemented by image analysis of the expelled melt which yielded equivalent values, highlighting the steady-state character of the frictional process.

4. Constraining the rheology of frictional melts
The viscosity of frictional melts can be approximated, to a first order, using an empirical equation based on their chemical composition. The presence of chemically heterogeneous protomelt pockets in zone #3 implies that the viscosity may widely vary at a microscopic scale (Fig. 6a). In the slip zone, however, the homogeneous composition of the frictional melt nears equilibrium with its mineral assemblage [see comparison of frictional melt and bulk rock data (Table 1)] and thus permits the use of a well-defined, non-Arrhenian temperature (T in Kelvin)-viscosity (\(\eta \) in Pa·s) relationship modelled as:

\[
\log \eta = -4.55 + \frac{8044.9}{T - 747.5}
\]

(10)

When comparing values obtained through this equation with the measured calorimetric \(T_g \) of 690 °C (Fig. 6b-c), we observe that the \(T_g \) agrees with the frictional melt viscosity of \(10^{11} \) Pa·s. This agreement and the observation of a single \(T_g \) peak imply that the bulk of frictional melt reached overall chemical and structural homogeneity. Indeed, the minor proportion of protomelts to frictional melt supports the use of the latter in our calculation of suspension viscosity.

The apparent viscosity of the suspension generated by frictional melting was modelled by adding the relative effects of crystals (estimated using Costa et al., 2009) to the modelled viscosity equation 10 (Fig. 6c). In this calculation we couple both plagioclase and pyroxene as solid particles (30 vol.%), whereas we consider the iron oxides as part of the interstitial melt, due to their ability to deform viscously (at extremely low viscosity of \(\sim 10^{-2} \) Pa·s). [Note: bubbles were too few and spread to yield strong rheological consequences and as such they were not considered in the calculation.] The presence of 30 vol.% of near equant crystal fragments adds approximately 0.71 order of magnitude of viscosity. During the experiment however, thickening of the frictional melt layer (from 0 to \(\sim 0.5 \) mm) and variable strain rate
across the slip zone (0 to 2.6x10^3 s^-1) thus promote a gradient in the relative viscosity increase of the shear thinning suspension from about 0.71 in the middle of the sample to 0.45 at the outer margin (with an average of 0.58). Computation of the viscosity progression using the modelled temperature of the slip zone (assuming it is homogeneous) shows that the viscosity estimates decreased from 10^{4.2} to 10^{3.4} Pa·s and remained around this value after complete spreading of the melt layer at the slip interface (Fig. 6d), which led to the 25% decrease in shear stress before stabilisation and establishment of a thermal and kinetic balance. Under such a high slip rate, and therefore strain rate, the frictional melt, with such low modelled viscosity is not expected to achieve fragmentation (by exceeding the limiting viscous relaxation rate of the structure); yet, if failure did take place, the high relaxation rate of such a low modelled viscosity would promote immediate relaxation and healing of the fragments to a fully viscous frictional melt.

5. Discussion
5.1. The complex rheology of frictional melts

The physico-chemical complexity of the process of frictional melting yields an equally complex rheological response. The estimation of natural frictional melts’ viscosities, with the crystallisation overprints onto the original composition of the interstitial melt, certainly is a difficult task (e.g., Spray, 1993), but with experiments, as demonstrated in this study, quenching to a glass ensures the exact rheological characterisation of the interstitial frictional melt. Since earlier attempts at modelling the viscosity of frictional melts (e.g., Spray, 1993), the description of silicate liquid viscosity has much improved, with the agreement that silicate liquids are (under strain rate lower than the relaxation rate of their structure) Newtonian fluids that exhibit a
non-Arrhenian temperature dependence (e.g., Dingwell, 2007, and references therein). Whereas earlier Arrhenian models (e.g., Bottinga and Weill, 1972, Shaw, 1972) may describe well the viscosity of initial selective (i.e., high-temperature) melts, non-Arrhenian models (e.g., Giordano et al., 2008) entails a faster than exponential increase of the viscosity with cooling, which may carry drastic consequences for slip cessation during heat dissipation, forcing an earlier halt.

The rheology of frictional melt is further influenced by the ubiquity of fragments and bubbles. The description of suspension rheology has long been a challenge (Einstein, 1906, 1911). In the presence of a rigid load, the physical interactions of the crystals and the rock fragments augment the static viscosities (Roscoe, 1952) and induce a departure from a simple Newtonian behaviour (Bagdassarov et al., 1994), whereby the apparent viscosity becomes strain rate dependent (e.g., Caricchi et al., 2007, Lavallée et al., 2007). Unlike previous attempts to estimate the rheological contribution of fragments in frictional melts based on polymeric suspensions (Spray, 1993, Ujiie et al., 2007), silicic suspensions have a different rheological behaviour that deserves separate consideration (e.g., Costa et al., 2009). The thixotropic nature of multiphase silicate melt with an apparent viscosity decreasing with increase strain rates suggests that during slip cessation, reduction in strain rate would promote a rapid increase in apparent viscosity, which (like the aforementioned non-Arrhenian cooling scenario) may force slip to a halt. Such viscous break cannot be accounted for in earlier viscosity descriptions (Spray, 1993, Hirose and Shimamoto, 2005, Ujiie et al., 2007, Nielsen et al., 2008), based on Arrhenian models for Newtonian suspensions. In the presence of bubbles, the viscosity of liquids becomes difficult to estimate (with current models) as, depending on the strain rate and whether the bubbles may remain rigid or deform, the apparent
viscosity of the suspension may increase or decrease, respectively (Bagdassarov and Dingwell, 1992, Stein and Spera, 1992). It results that for the very low modelled viscosities of frictional melts as well as their high slip (c.f., strain) rates, bubbles are believed to deform and thus their presence would decrease the apparent viscosity of the melt, unlike previous inferences (Ujiie et al., 2007).

In the experiment, slip under steady state shear stress and viscosity reflects the balance between melt generation, homogenisation, viscous energy dissipation versus heat loss to the host rock and the surrounding, and melt extraction (e.g., Nielsen et al., 2008). Difficulty however arises when quantifying the extent of viscous energy dissipation since the strongest viscous heating takes place at the outer margin of the samples where the slip rate is highest (since the rate of heat production scale to the viscosity and the square of strain rate; Gonnermann and Manga, 2007), which is the region where frictional melt is first extracted. Consequently, contribution from viscous energy dissipation may be most significant in the sample’s middle regions where strain rates are intermediate and we estimate that heat is produced at a rate of degrees per seconds if heat is not loss (Hess et al., 2008); yet the modelled temperature reveal a stable temperature at the slip interface following the second peak in shear stress. In nature, the contribution from viscous energy dissipation may be significant (e.g., Cordonnier et al., in press) and deserve further consideration in future studies.

5.2. Frictional melting in volcanic environments

Volcanic environments, with their high ambient temperatures may play host to frictional melting in faults where the relative temperature increase required for melting is smaller than that found elsewhere in the crust where more typical crustal
geotherms are located. It is commonly inferred that pseudotachylytes resulting from frictional melting indicate high-velocity slip (e.g., 0.1 m/s) associated with earthquake events (e.g., McKenzie and Brune, 1972, Sibson, 1975). Such conditions are certainly commensurate with the idea of pseudotachylytes in dome-building eruptions, as both crystal-rich magma (behaving elastically on short timescale) and rocks (whether hosting glass in the groundmass or not) reside at high temperatures (e.g., 500-1000 °C) and thus relatively little friction is required to raise the temperature beyond the mobilisation point (i.e., T_g), as evidenced by the extraordinary viscous behaviour of the thick zone #2 wallrock in the experiment. Kendrick et al. (this issue) suggest that during extrusion of a ca. >730 °C spine at Mt. St-Helens, two small-magnitude 3.3 and 3.6 long-period earthquakes may have been associated with approximately 5-m slip events, which led to remelting of the ascending crystal-rich magma. Although the study of Kendrick (this issue) is the first to introduce frictional melting as a mechanism regulating the ascent of high-viscosity magma in volcanic conduits, it may be a common process. Difficulty may however arise in the identification of pseudotachylytes in conduit margins – zones infamous for their high shear rates – due to the presence of fine-grained, resorbed crystals and interstitial glass, the occurrence of flow banding and the potential thermal contribution from viscous energy dissipation. Also, the high ambient temperature may promote slow cooling and sufficient time for recrystallization, resulting in coarse grained pseudotachylytes. Yet, their distinction may be possible via 1) calorimetric analysis of the glass transition, 2) geothermobarometric analysis of the crystal stability field, 3) identification of droplets of iron oxide (commonly immiscible in silicate melts at low pressures) with single-domain to pseudo-single-domain magnetite and 4) contrasting Curie temperatures (e.g., Nakamura et al., 2002). These analyses must ultimately indicate contrasting P-T
equilibrium, magnetic properties (remanence, susceptibility and domain state) and cooling history (isotropic crystal size distribution and interstitial melt content) between the wallrock and the pseudotachylyte.

Frictional melting may play an important role in the evolution of lava domes, where strain localisation and rapid dislocation of the deeper structures may remobilise and destabilise the domes. One of the most spectacular, contemporary manifestations of strain localisation takes place every hour at Santiaguito volcano (Guatemala) where sudden destabilisation along the conduit wall triggers rings of gas-and-ash explosions (Johnson et al., 2008). This activity accompanies the rapid structural uplift of the dome at an approximate rate of 0.2-0.5 m/s – a rate presumably sufficient to induce significant frictional heating. Efforts should be made to identify their importance as well as assess their contribution to volcanic flow dynamics.

Volcanic rocks commonly contain primarily plagioclase and pyroxene and/or amphibole as their main phenocrysts assemblage. In the present study, the use of an andesite bearing plagioclase and pyroxenes (that have similar melting temperatures) favoured assimilation and homogeneity of the frictional melt composition – equivalent to the chemical composition of the bulk rock. It is also possible that the similar melting temperature of the minerals resulted in a minimal fraction of fragments remaining in the melt, thereby decreasing their relative rheological contribution. In contrast, friction in andesite bearing plagioclase and amphibole – *i.e.*, minerals with contrasting melting temperatures – would result in a dichotomy at the rock-melt interface, with preferential melting of amphibole and longer resistance of plagioclase, engulfed as particles in the frictional suspension.

In the modelling of suspension rheology, the use of empirical viscosity models such as that of Costa and others (2009) may show a certain degree of discrepancy
with the actual rheology of the melt as it is built on viscosity data for a range of strain rates adequate for magmatic processes, but considerably slower than that taking place in the friction experiments or in nature, during seismogenic faulting and pseudotachylyte generation. [Yet, it is to date, the best approximation of the rheology of frictional melts.] Perhaps in the future apparatus such as the high-velocity rotary shear apparatus may be adapted to permit controlled (i.e., without mass loss and crystal comminution) rheological work at such extreme conditions and complement tests on viscoelastic properties (e.g., Hessenkemper and Brückner, 1991, Webb, 1991, Bornhoft and Brückner, 1994, Vo-Thanh et al., 2005). Certainly, the properties of frictional melt and their importance in modifying volcanic processes deserve an important consideration in future assessment of volcanic scenarios.

6. Summary

The rheological significance of frictional melting and pseudotachylyte generation in volcanic systems is introduced and described using a high-velocity rotary shear experiment on an andesitic volcanic rock (containing plagioclase and pyroxenes as phenocrysts and microlites as well as interstitial glass) along with a method to compute the complex strain-rate-dependent viscosity of the suspension produced during frictional melting. Rheologically, four zones are identified which grade from (#1) intact material at beyond 2.5 mm from the slip zone to (#2) a thin zone of increased crystal mobility between 2.5 and 0.4 mm due to the crossing of the glass transition temperature in the wallrocks and slow viscous deformation, (#3) a thin zone of partially molten rocks with chemically heterogeneous protomelts at ca. 0.4-0.3 mm, and (#4) a 0.2- to 0.4-mm thick zone of chemically homogeneous melt containing resorbed, equant crystal fragments as well as spherical iron oxide droplets.
and micro-bubbles. Computation of the viscosity of the fictional melt indicates a transient viscosity decrease towards the outer margin of the sample. When comparing the evolution in viscosity due to heating after formation of a pervasive melt layer in the slip zone, a large viscosity drop on the order of 0.8 logarithmic units of viscosity causes a 25% diminishment in monitored shear stress until stabilisation associated with the self-sustainability of the process. Frictional melting in volcanic systems is finally described with its complexity in recognition in nature and its potential rheological importance during volcanic eruptions. We infer that volcanic systems (with their high temperature and pressure conditions as well as their dynamic fault/shear structures) are prone to the occurrence of frictional melting during slip events that commonly result from strain localisation in late stage magma transport.

Acknowledgements

We wish to acknowledge the help from Stefan Nielsen and Benoit Cordonnier for discussions related to the thermal correction model. We are thankful to Saskia Bernstein for assistance with the microprobe analysis, to Maurizio Petrelli for assistance with the laser ablation work, to Andrea Cavallo and Sergio Vinciguerra for preliminary imaging of the frictional glass, to Benoit Cordonnier for introducing us to the JMicroVision toolbox, and to Toshihiko Shimamoto, Wataru Tanikawa, Jackie E. Kendrick and Diego Perugini for discussion at various stage of this study. Yan Lavallée acknowledges funds from the Deutsche Forschungsgemeinschaft (DFG) grants LA 2651/1-1 and LA 2651/3-1, and Kai-Uwe Hess acknowledges the DFG grant HE 4565/2-1. Michael Heap was supported by the German Federation of Materials Science and Engineering (BV MatWerK) and the DFG. Donald B. Dingwell acknowledges support from a LMUexcellent Research Professorship in Experimental
Volcanology of the Bundesexzellenzinitiative as well as the Advanced Researcher Grant EVOKE (247076) of the ERC. This study benefited from the constructive review of an anonymous reviewer as well as John Spray.

References

marks of block surfaces in block-and-ash flows at Merapi volcano, Central

Shaw, H. R. 1972. Viscosities of Magmatic Silicate Liquids - Empirical Method of
Prediction. *American Journal of Science* 272(9), 870-872.

Shimamoto, T., Lin, A. M. 1994. Is frictional melting equilibrium or non-equilibrium
melting? *Structural Geology (Journal of the Tectonic Research Group of
Japan)* 39, 79-84.

Simmons, J. H. 1998. Morey Award paper - What is so exciting about non-linear
viscous flow in glass, molecular dynamics simulations of brittle fracture and
semiconductor-glass quantum composites. *Journal of Non-Crystalline Solids*
239(1-3), 1-15.

apparatus - simulation on a fault plane. *Journal of Structural Geology* 9(1),
49-60.

investigation using radial friction welding apparatus. *Contributions to
Mineralogy and Petrology* 99(4), 464-475.

minerals. *Tectonophysics* 204(3-4), 205-221.

Spray, J. G. 1993. Viscosity determination of some frictionally generated silicate
melts - Implications for fault zone rheology at high strain rates. *Journal of
Geophysical Research-Solid Earth* 98(B5), 8053-8068.

1119-1122.

Stein, D. J., Spera, F. J. 1992. Rheology and Microstructure of Magmatic Emulsions -
Theory and Experiments. *Journal of Volcanology and Geothermal Research*
49(1-2), 157-174.

Stein, D. J., Spera, F. J. 2002. Shear viscosity of rhyolite-vapor emulsions at
magmatic temperatures by concentric cylinder rheometry. *Journal of
Volcanology and Geothermal Research* 113(1-2), 243-258.

microlite-bearing rhyolitic obsidians: An experimental study. *Bulletin of
Volcanology* 58(4), 298-309.

Temperature of Melts in the System Diopside-Anorthite. *Contributions to
Mineralogy and Petrology* 109(3), 295-303.

Tauber, P., Arndt, J. 1987. The Relationship between Viscosity and Temperature in

Figure caption

Figure 1. Schematics of (a) the high-velocity rotary apparatus (as described by Hirose and Shimamoto, 2005) and (b) the sample assembly for which, four thermocouples were embedded in the sample in stationary side. 1) specimen; 2) motor; 3) torque limiter; 4) torque gauge; 5) electromagnetic clutch; 6) rotary encoder; 7) rotary column; 8) torque-axial force gauge; 9) ball spline; 10) axial force gauge; 11) air actuator; 12) displacement transducer; and 13) water reservoir.

Figure 2. Progression of shear stress and axial shortening of sample, induced by slip at a rate of 1.3 m/s and normal stress of 1 MPa. The arrow indicate the amount of slip at which incandescent bits of melts were visible. The inset shows the abrupt increase in shear stress at the onset of the experiment.

Figure 3. Frictional melt produced during slip of andesite at a slip rate of 1.3 m/s. (a) Photograph of a sample with the generated blob of frictional melt. (b) Scan of a thin section in the long axis of the sample, which highlight zone 1 (z1) in which the rock is intact; zone 2 (z2) where enough heat was generated to overcome Tg, which permitted the rock to behave viscously; and zone 3 (z3) and 4 (z4) where the rock selectively melted. Tc indicates one of the thermocouples. The accompanying microphotographs in (c) z1, (d) z2, and (e) z3 show differences in microlite contents and orientations; especially, the microlites in z2 express an increased preferred orientation of their long axis sub-parallel to the direction of shear in the slip zone (as approximated by the arrows), in contrast to z1 which display random microlite orientation. (e) Viscous deformation in z3 and z4 enabled the failure and dislocation of crystal fragments.
Figure 4. (a) Mosaic of seven BSE images across the length of the slip zone. The frictional melt is visible as a lighter grey band with darker grey crystal fragments. The blue box indicates the location of figure 4c and the arrows point to the thermal cracks. (b) SEM image showing an example of protomelt forming at the interface between the rock and the frictional melt. [NOTE: this image alone was acquired with a JEOL JXA-8200 at INGV-Rome via the acknowledged assistance of A. Cavallo]. (c) BSE image of the frictional melt area in which crystal fraction was estimated using JMicrovision.

Figure 5. X-ray computed tomographic images of microstructures. [Note: the missing upper area was cut for thin section preparation] (a) plan view image of intact material away from the slip zone. In this area, crystals (in different shades of grey) and bubbles (in black) are homogeneously scattered. (b) Plan view image of the interface between the host rock and the slip zone. The host rock is most obvious in the center of the rock where crystal and bubble remain homogeneously scattered. In the surrounding melting zone, we observe rare, very fine crystal (most are below detection limit) and near the outer margin of the slip zone, a ring of bubbles developed. We can also see the blob of melt that spilled outside the sample and accumulated on the margin. (c) Plan view image of the slip zone. We observe annular rings in crystal size distribution (of the light Fe-oxides) as well as concentric and radial thermal cracks (see inset box). Note: the grey scale reflects the density of imaged molecules. The voxel size in the image is 36.7 microns.
Figure 6. (a) Non-Arrhenian temperature dependence of viscosity of the melts generated by frictional slip. Viscosity estimated using chemical composition as input parameter in the GRD viscosity calculator (Giordano et al., 2008). The viscosity of the frictional melt agrees well with the measured calorimetric T\(_g\). (b) Calorimetric properties of the frictional melt during thermal analysis in a differential scanning calorimeter. The peak at a constant rate of 10 °C/min (for a known cooling rate of 10 °C/min) is used as a value of the glass transition T\(_g\) at a temperature of ~690+/−5 °C (indicated by the arrow). (c) Strain rate dependence of the relative viscosity increase induced by the presence of 30 vol.% crystal (under isothermal condition), computed using the complex viscosity model of Costa et al, 2009. (d) Evolution of the modelled temperature and the apparent viscosity of the suspension (computed for an averaged strain rate and a relative viscosity increase of 0.45 log (in Pa·s)) generated by frictional melting.
Figure
Click here to download high resolution image
Figure
Click here to download high resolution image
Figure

Click here to download high resolution image
Table 1. Normalized geochemical composition of the melt generated by friction of andesite from Volcán de Colima. The compositions were measured by electron microprobe, using a 15kV beam, operating at 10 nA scanning box mode (10^2 μm^2).

Standards: Si, Ca: wollastonite; Al, K: orthoclase; Na: albite; Mg: periclase; Ti, Mn: ilmenite; Fe: hematite. Std. dev.: Standard deviation.

* Bulk rock chemical composition from Reubi and Blundy, 2008

** Interstitial melt chemical composition from Lavallee et al., 2007

<table>
<thead>
<tr>
<th></th>
<th>Glass (69)</th>
<th>Glass (70)</th>
<th>Glass (88)</th>
<th>Glass (10)</th>
<th>Glass (11)</th>
<th>Glass (54)</th>
<th>Glass (55)</th>
<th>Std. dev. (sigma 1)</th>
<th>bulk rock*</th>
<th>Interstitial glass**</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>63.946</td>
<td>63.112</td>
<td>63.154</td>
<td>58.611</td>
<td>54.244</td>
<td>38.033</td>
<td>36.860</td>
<td>0.261</td>
<td>61.200</td>
<td>73.432</td>
</tr>
<tr>
<td>Na₂O</td>
<td>4.134</td>
<td>4.105</td>
<td>4.111</td>
<td>2.665</td>
<td>1.816</td>
<td>2.320</td>
<td>2.110</td>
<td>0.161</td>
<td>4.423</td>
<td>4.317</td>
</tr>
<tr>
<td>K₂O</td>
<td>1.580</td>
<td>1.544</td>
<td>1.663</td>
<td>1.215</td>
<td>0.786</td>
<td>0.396</td>
<td>0.261</td>
<td>0.043</td>
<td>1.262</td>
<td>3.743</td>
</tr>
<tr>
<td>MgO</td>
<td>2.953</td>
<td>2.910</td>
<td>3.134</td>
<td>6.121</td>
<td>8.607</td>
<td>8.107</td>
<td>8.377</td>
<td>0.174</td>
<td>3.898</td>
<td>0.376</td>
</tr>
<tr>
<td>CaO</td>
<td>5.207</td>
<td>5.396</td>
<td>5.341</td>
<td>8.162</td>
<td>10.044</td>
<td>12.172</td>
<td>13.624</td>
<td>0.159</td>
<td>6.100</td>
<td>1.408</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.633</td>
<td>0.672</td>
<td>0.597</td>
<td>0.977</td>
<td>1.303</td>
<td>2.177</td>
<td>2.523</td>
<td>0.041</td>
<td>0.596</td>
<td>0.745</td>
</tr>
<tr>
<td>FeO</td>
<td>5.274</td>
<td>5.260</td>
<td>4.985</td>
<td>10.732</td>
<td>13.204</td>
<td>19.893</td>
<td>18.402</td>
<td>0.258</td>
<td>5.272</td>
<td>2.588</td>
</tr>
<tr>
<td>MnO</td>
<td>0.100</td>
<td>0.125</td>
<td>0.130</td>
<td>0.337</td>
<td>0.379</td>
<td>0.452</td>
<td>0.514</td>
<td>0.042</td>
<td>0.101</td>
<td>0.071</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.202</td>
<td>0.257</td>
<td>0.190</td>
<td>1.533</td>
<td>2.507</td>
<td>9.396</td>
<td>10.743</td>
<td>0.103</td>
<td>0.182</td>
<td>0.220</td>
</tr>
</tbody>
</table>